(a)
Interpretation:
For the given reaction
(a)
Explanation of Solution
The given reaction is shown below,
The standard Gibbs free energy of the reaction can be expressed as follow,
The standard Gibbs free energy of the reaction is
(b)
Interpretation:
For the given reaction
(b)
Explanation of Solution
The given reaction is shown below,
The temperature of the reaction can be expressed as follow,
The standard Gibbs free energy of the reaction is
The entropy of the reaction is calculated as follows,
Therefore,
The temperature of the reaction is
(c)
Interpretation:
When a cylinder is filled with
(c)
Explanation of Solution
The given reaction is shown below,
The reaction can be expressed as follow,
ICE table:
Initial concentration | ||||
Change | ||||
At equilibrium |
The partial pressures of
Therefore, all the pressure is equal to
(d)
Interpretation:
When a cylinder is filled with
(d)
Explanation of Solution
The given reaction is shown below,
Q value is calculated as follows,
The Q value is greater than one, hence the reaction shift produce reactants.
ICE table:
Initial concentration | ||||
Change | ||||
At equilibrium |
Pressure,
The partial pressures of
Therefore, all the pressure is calculated.
Want to see more full solutions like this?
Chapter 5 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- Actually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardCalculate the standard Gibbs free-energy change when SO3 forms from SO2 and O2 at 298 K. Why is sulfur trioxide an important substance to study? (Hint: What happens when it combines with water?)arrow_forwardDetermine the standard Gibbs free energy change, rG, for the reactions of liquid methanol, of CO(g), and ofethyne, C2H2(g), with oxygen gas to form gaseous carbondioxide and (if hydrogen is present) liquid water at298 K. Use your calculations to decide which of thesesubstances are kinetically stable and which are thermodynamically stable: CH3OH(), CO(g), C2H9(g), CO2(g),H2O().arrow_forward
- Consider the reaction NH4+(aq) H+(aq)+NH3(aq) Use G f for NH3(aq) at 25C=26.7 kJ/mol and the appropriate tables to calculate (a) G at 25C (b) Ka at 25Carrow_forwardAnother step in the metabolism of glucose, which occurs after the formation of glucose6-phosphate, is the conversion of fructose6-phosphate to fructose1,6-bisphosphate(bis meanstwo): Fructose6-phosphate(aq) + H2PO4(aq) fructose l,6-bisphosphate(aq) + H2O() + H+(aq) (a) This reaction has a Gibbs free energy change of +16.7 kJ/mol of fructose6-phosphate. Is it endergonic or exergonic? (b) Write the equation for the formation of 1 mol ADP fromATR for which rG = 30.5 kJ/mol. (c) Couple these two reactions to get an exergonic process;write its overall chemical equation, and calculate theGibbs free energy change.arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the explosive decomposition of TNT? Use your knowledge of TNT and the chemical equation, particularly the phases, to answer this question. (Thermodynamic data for TNT are not in Appendix G.) 2C7H5N3O6(s) 3N2(g) + 5H2O() + 7C(s) + 7CO(g)arrow_forward
- When 7.11 g NH4NO3 is added to 100 mL water, the temperature of the calorimeter contents decreases from 22.1 C to 17.1 C. Assuming that the mixture has the same specific heat as water and a mass of 107 g, calculate the heat q. Is the dissolution of ammonium nitrate exothermic or endothermic?arrow_forwardDetermine the equilibrium constant for the reaction Sn+Pb2+Sn2++Pbarrow_forwardFor each situation described in Question 13, predict whether the entropy of the system increases or decreases.arrow_forward
- Reword the statement in Question 109 so that it is always true. Criticize this statement: Provided it occurs at an appreciable rate, any chemical reaction for which rG 0 will proceed until all reactants have been converted toproducts.arrow_forwardCalculate the equilibrium constant for the following reaction at 25o C, given that change in standard Gibbs free energy (f) of O3 (g) is 163.4 kJ/mol. 2O3(g) -> 3O2(g)arrow_forwardConsider the following reaction at 25°C: 3 Ni(s) + N²(g) + 3 H2O(g) → 3 NiO(s) + 2NH:(g) where K = 6.74 x 104 At what partial pressure of ammonia will one be able to get out 11.5 kJ/mol of Gibbs free energy from this reaction when the rest of the mixture contains 57.6 g NiO, 182.3 g Ni, 8.54 atm of nitrogen gas, and 10.07 atm of water vapor? (Enter the partial pressure using two significant figures.)arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning