Concept explainers
The inductor current IL, voltage 'v' across the 2Ω resister and voltage
Answer to Problem 5.72HP
Explanation of Solution
Given:
The given circuit is shown below.
The switch is closed at t = 0 s and reopened at t = 5 s.
Calculation:
The capacitor does not allow the sudden change in voltage and the inductor does not allow the sudden change in current.
At t = 0, the capacitor behaves like short circuit and inductor behaves like open circuit.
The modified circuit diagram is:
From the circuit,
Relation between inductor current and voltage is:
Considering the following circuit, at
Applying Kirchhoff's voltage law in loop1,
Applying Kirchhoff's voltage law in top loop,
Differentiating the equation with respect to t,
Applying Kirchhoff's voltage law in bottom loop,
From equation 1, putting the value of
From equation 2, putting the value of
Differentiation of any constant value is zero.
Writing the equation in standard second order differential equation:
Dividing by 0.75,
Comparing the equation with standard second order differential equation:
The natural frequency is determined as:
The damping ratio is determined as follows:
The value of damping ratio is less than 1.
Hence, it is an underdamped second order circuit.
The following expression is used to solve the complete solution.
The roots
At t = 0, the inductor's natural response current is zero.
Differentiating the above equation and substituting t = 0,
Substituting,
Thus, expression for inductor current is:
The voltage across the inductor is:
The voltage across the resistor is:
The voltage across the capacitor is:
Considering that at t = 5 s, the switch moved to open position.
The initial value of the inductor current is:
The initial value of the capacitor voltage is:
Considering the following circuit to determine the initial values:
The inductor voltage:
Considering the following circuit for t > 5 s.
Applying Kirchhoff's voltage law in top loop,
Differentiating the equation with respect to t,
Applying Kirchhoff's voltage law in bottom loop,
Comparing with standard second order equation:
The natural frequency is determined as:
The damping ratio is determined as follows:
The value of damping ratio is less than 1.
Hence, it is an underdamped second order circuit.
The following expression is used to determine the complete solution:
The roots
Substituting
Hence, the expression of inductor current is:
The voltage of inductor is:
The voltage of 2O resistor:
The voltage across capacitor is:
Want to see more full solutions like this?
Chapter 5 Solutions
Principles and Applications of Electrical Engineering
- Given the following voltage divider, R1 is fixed and R2 is implemented using two terminals of a 10k pot so that R2 is a variable over the range of 0<=R2<= 10 kiloolhm. V1 is a voltage source from a 9 V battery. What is the largest value of R1 that will allow the output voltage to vary over a range that includes at least 1.5V<= V2 <= 5.0V. Then, determine a resistor (or a combination of resistors) of standard type you might that will get as close as possible to but not larger than the calculated value of R1.arrow_forwardFind the Thevenin And Norton equivalent circuit for nodes a and b. Do not use chatgpt or AIarrow_forwardGiven the following voltage divider circuit, where V1 is a 9V battery, R1 is implemented using two terminals of a 10k pot so that R1 is a variable over the range 0 <= R1 <= 10kiloohlm. What is the largest value of the resistor R1 that will permit the output voltage to vary over the range that includes at least 1.5V <= V2 <= 5.0 V? Then, find a resitor (or a combinations of resistors) that are common types that would get as close as possible but not larger than the calculated value for R2.arrow_forward
- Given the following voltage divider circuit, both resistors R1 and R2 are implemented using the three terminals of a 10k pot so that R1 and R2 are both variables such that 0<=R2 <=10kiloolhms and R1 +R2 = 10kiloolhms. V1 is a 10V battery voltage source. Find the range of values for R2 that wil cause the output voltage to vary over the range 1.5V<= V2<= 5.0V.arrow_forward1. Laboratory Task Descriptions Verification of series RLC transient analysis computations For this laboratory exercise, students will construct an underdamped series RLC circuit, then make voltage and current measurements to investigate the validity of transient circuit analysis techniques for series RLC circuits. Measurements will be obtained using the oscilloscopes available in the laboratory. The signal generator will be used to apply a 0[V] to 10[V], 50[%] duty cycle square wave across the RLC circuit to establish the circuit response. The required square wave signal frequency for the RLC circuit will be computed below in part 2b of the prelab work. Note: To receive credit for the following prelab computations, all required equations for the prelab below must be generated in variable form before substituting component values. Generation of the equations in variable form is required to permit substituting the actual measured component values into the solution equations. This…arrow_forward1. Laboratory Task Descriptions Verification of series RLC transient analysis computations For this laboratory exercise, students will construct an underdamped series RLC circuit, then make voltage and current measurements to investigate the validity of transient circuit analysis techniques for series RLC circuits. Measurements will be obtained using the oscilloscopes available in the laboratory. The signal generator will be used to apply a 0[V] to 10[V], 50[%] duty cycle square wave across the RLC circuit to establish the circuit response. The required square wave signal frequency for the RLC circuit will be computed below in part 2b of the prelab work. Note: To receive credit for the following prelab computations, all required equations for the prelab below must be generated in variable form before substituting component values. Generation of the equations in variable form is required to permit substituting the actual measured component values into the solution equations. This…arrow_forward
- I need handwritten solution to this question,no Artificial intelligencearrow_forwardDO NOT USE AI NEED HANDWRITTEN SOLUTION For the circuit below a. For the load to consume 39 watts, what is the value of the resistor ‘R’? b. When the load is consuming 39 watts, what is the magnitude of the current through the resistor ‘R’? c When the load is consuming 40 watts, what is the power delivered by the 100 V source?arrow_forwardA). Find the inverse of matrix A using Gauss Elimination method. 1 0 01 A = -2 1 0 5 -4 1 B). Use fixed point iteration method to solve f(x)=sin(√√x) - x, take n = 5 and initial value x 0.5.arrow_forward
- The joint pdf of random variables X=1, 2 and Y=1, 2, 3 is P(X,Y) = X [0.0105 Find (a) The value of k. (c) P(X21, Y £2). Y 0.2 0.15] 0.18 (b) the marginal probability function of X and Y. (d) x, Hyarrow_forwardUse Gauss Elimination method to solve the following systems of linear equations. x13x24x3 8 3x1 -x2+5x3 7 4x1+5x2 - 7x3 = 2.arrow_forwardHANDWRITTEN SOLUTION PLEASE NOT USING CHATGPTarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,