Concept explainers
(a)
The capacitor voltage
Answer to Problem 5.71HP
The value of the capacitor voltage
Explanation of Solution
Calculation:
The given diagram is shown in Figure 1
For time
The required diagram is shown in Figure 2
From above, the expression for the initial voltage across the capacitor is given by,
The expression for the voltage across the capacitor for time
Substitute
Conclusion:
Therefore, the value of the capacitor voltage
(b)
The capacitor voltage
Answer to Problem 5.71HP
The value for the voltage across the capacitor at time
Explanation of Solution
Calculation:
The conversion from
The conversion from
The expression for the current flowing through the inductor for time
The inductor opposes sudden change in the current, thus the current
Substitute
Mark the values and redraw the diagram for time
The required diagram is shown in Figure 3
Apply KVL in the above circuit.
The standard second order equation for the differential equation.
From above and from equation (1), the angular frequency is derived as,
Substitute
The expression for the damping coefficient is given by,
Substitute
The value of
The expression to calculate the damping frequency of the circuit is given by,
Substitute
The expression for the output response of the capacitor is given by,
Substitute
Substitute
Substitute
The differentiation of equation (3) with respect to
Substitute
The expression for the current through the inductor and the capacitor is same and is given by,
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
Therefore, the value for the voltage across the capacitor at time
(c)
The capacitor voltage
Answer to Problem 5.71HP
The final voltage across the capacitor for the time
Explanation of Solution
Calculation:
For time
The required diagram is shown in Figure 4
From the above circuit, the circuit is source free and the final voltage across the capacitor is given by,
Conclusion:
Therefore, the final voltage across the capacitor for the time
(d)
The value of maximum capacitor voltage.
Answer to Problem 5.71HP
The value of maximum capacitor voltage is
Explanation of Solution
Calculation:
The maximum capacitor voltage is obtained by evaluating the expression for voltage across the capacitor equal to zero and is given by,
Substitute
Solve further as,
Substitute
Conclusion:
Therefore, the value of maximum capacitor voltage is
Want to see more full solutions like this?
Chapter 5 Solutions
Principles and Applications of Electrical Engineering
- I need integration of equations Sn(w) = 1/w2 = Sn(w) 10-6 watt/Hz Sn(w) 10-12 es =arrow_forwardI need Integration of equations S₁ (w) = In (|w] + 1)arrow_forwardFor the area shown in the figure, write the limits of integration using both the vertical and horizontal cross-sections, then evaluate the integrals. . Find the Fourier expression of the following periodic function 3 -3-2xarrow_forward
- I need a solution from an expert without artificial intelligence. Choose the correct answer: 1. In AMI code, the shapes of "1" and "O" are, bit dependent, not related to each other). 2. In FDM the guard band is used to decrease, maintain, not related to). 3. Higher number of levels in PCM produces, (the same, opposite to each other, next the overlap between FDM signals. (increase, (higher quantization error, less number of bits per sample, lower quantization error, the same number of bits per sample). Fe Av 4. If the maximum shift in frequency is 70 kHz and the minimum deviation in frequency of the actual signal is 109.93 MHz, what is the carrier frequency? (110 MHz, 110 kHz, 107 kHz, 102 MHz) 5. TDM of signals requires them to have the same amplitude, sampling frequency, energy). 6. In standard AM, the last step in the transmitter is subtracting, multiplying, dividing). . In digital carrier systems, PSK). (maximum frequency, maximum the carrier signal. (adding, has higher bandwidth.…arrow_forwardNeed Handwritten step by step solution. Do not use chatgpt or AIarrow_forwardA linear electrical load draws 11 A at a 0.72 lagging power factor./1 153. When a capacitor is connected, the line current dropped to 122 A and the power factor improved to 0.98 lagging. Supply frequency is 50 Hz. a. Let the current drawn from the source before and after introduction of the capacitor be 11 and 12 respectively. Take the source voltage as the reference and express 11 and 12 as vector quantities in polar form. b. Obtain the capacitor current, IC = 12 - 11, graphically as well as using complex number manipulation. Compare the results. c. Express the waveforms of the source current before (11(t)) and after (12(t)) introduction of the capacitor in the form Im sin(2лft + 0). Hand sketch them on the same graph. Clearly label your plots. d. Analytically solve i2(t) – i1(t) using the theories of trigonometry to obtain the capacitor current in the form, ¡C(t) = ICm sin(2πft + OC). Compare the result with the result in Part b.arrow_forward
- Transmission line data:Data:• Active power of the load (P): 50 kW• Power factor of the load (PF): 0.8 (lagging)• Line-to-line voltage at the load (V_LC): 13.8 kV• Line resistance (R): 2 Ω• Line inductance (L): 0.8 H• Line capacitance (C): 0.0003 F• Required series compensation: 60% of the line impedance.• Line length: 250 kmDetermine:1. Characteristic impedance and propagation constant.2. The generalized long line constants A, B, C, D.3. Total voltage, current and power at the generating end.4. Voltage regulation.5. Parameters A, B, C, D of the compensation circuit.6. New generalized constants of the power system afterseries compensation.7. Conclusion of the results obtained.arrow_forward3.18 In a single-phase half-wave ac-dc converter, the average value of the load current is 1.78 A. If the converter is operated from a 240 V, 50 Hz supply and if the average value of the output voltage is 27% of the maximum possible value, calculate the following, assume the load to be resistive. (a) Load resistance (b) Firing angle (c) Average output voltage (d) The rms load voltage (e) The rms load current (f) DC power (g) AC power (h) Rectifier efficiency (i) Form factor (j) Ripple factorarrow_forwardTo find the Fourier series for the periodic function f(x) = 2 -2 when π < x < 0 - when 0 < x < πarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,