Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 4ETSQ
To determine
The incorrect statement about nucleate and growth transformation from liquid to solid.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
26) Given the T-T-T curve below, select the process that will result in a microstructure of nearly all
bainite.
a. Cool to 400°C, hold for 20 seconds, then quench to room temperature
b. Cool to 500°C, hold for 10 seconds, then quench to room temperature
c. Quench to 125°C, hold for 10 seconds, then reheat to 600°C for more than 100 seconds
d. Cool to 725°C, hold for 1,000 seconds, then quench to 125°C
e. Cool to 600°C, hold for 1 second, the quench to room temperature
Temperature (°C)
f.
none of the above
900
800 H
A+C
1600
1400
700-
1200
A+P
600
P
1000
500H
A+B
800
400-
Temperature (°F)
4
A
300-
M(start)
200
M(50%)
100- M(90%)
600
50%
T
0
1
10
102
103
10
105
106
Time (s)
400
200
27) Fatigue failure situations are typically dependent upon which combination of the following
factors?
a. Slip plane, slip direction, and orientation of the applied load
b. Yield strength, elastic modulus, and ductility of the material
c. Temperature, time, and applied stress
d. Stress amplitude, frequency of…
26) Given the T-T-T curve below, select the process that will result in a microstructure of nearly all
bainite.
C.
Cool to 400°C, hold for 20 seconds, then quench to room temperature
Cool to 500°C, hold for 10 seconds, then quench to room temperature
Quench to 125°C, hold for 10 seconds, then reheat to 600°C for more than 100 seconds
d. Cool to 725°C, hold for 1,000 seconds, then quench to 125°C
Cool to 600°C, hold for 1 second, the quench to room temperature
f. none of the above
900
Temperature (°C)
800
A+C
700
A+P
600
500
A+B
400
A
300
200
M(start)
M(50%)
100
M(90%)
TT
1600
1400
1200
1000
800
600
50%
0
1
10
102
103 104
105
106
Time(s)
400
200
Temperature (°F)
27) Fatigue failure situations are typically dependent upon which combination of the following
factors?
Slip plane, slip direction, and orientation of the applied load
b. Yield strength, elastic modulus, and ductility of the material
c. Temperature, time, and applied stress
d. Stress amplitude, frequency of loading, and number…
2. In a copper-nickel system as shown in figure, an alloy composition of 35 wt% Ni was
cooled down from the temperature of 1300°C. Sketch the expected microstructures at
the point a, b, c, d and e and briefly describe the development of these microstructures
in the equilibrium cooling.
L.
L
(35 Ni)
1300
L (32 Ni)
a (46 Ni)
a(43 Ni)
L (24 Ni)
d
1200
1100
20
30
40
50
Composition (wt% Ni)
Temperature (°C))
Chapter 5 Solutions
Materials Science And Engineering Properties
Ch. 5 - Prob. 1CQCh. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQ
Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - Prob. 13CQCh. 5 - Prob. 14CQCh. 5 - Prob. 15CQCh. 5 - Prob. 16CQCh. 5 - Prob. 17CQCh. 5 - Prob. 18CQCh. 5 - Prob. 19CQCh. 5 - Prob. 20CQCh. 5 - Prob. 21CQCh. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - Prob. 24CQCh. 5 - Prob. 25CQCh. 5 - Prob. 26CQCh. 5 - Prob. 27CQCh. 5 - Prob. 28CQCh. 5 - Prob. 29CQCh. 5 - Prob. 30CQCh. 5 - Prob. 31CQCh. 5 - Prob. 32CQCh. 5 - Prob. 33CQCh. 5 - Prob. 34CQCh. 5 - Prob. 35CQCh. 5 - Prob. 36CQCh. 5 - Prob. 1ETSQCh. 5 - Prob. 2ETSQCh. 5 - Prob. 3ETSQCh. 5 - Prob. 4ETSQCh. 5 - Prob. 5ETSQCh. 5 - Prob. 6ETSQCh. 5 - Prob. 7ETSQCh. 5 - Prob. 8ETSQCh. 5 - Prob. 9ETSQCh. 5 - Prob. 10ETSQCh. 5 - Prob. 11ETSQCh. 5 - Prob. 12ETSQCh. 5 - Prob. 1DRQCh. 5 - Prob. 2DRQCh. 5 - Prob. 3DRQCh. 5 - Prob. 5.1PCh. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - Prob. 5.4PCh. 5 - Prob. 5.5PCh. 5 - Prob. 5.6PCh. 5 - Prob. 5.7PCh. 5 - Prob. 5.8PCh. 5 - Prob. 5.9PCh. 5 - Prob. 5.10PCh. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1 If the particle formed at the sine of the liquid were a cylinder whose diameter is equal to its height, obtain the optimal height and then the critical Gibbs free energy Explain all stepsarrow_forwardFigure P2.33 shows a portion of the H2O-NaCl phase diagram .a. Using the diagram, briefly explain how spreading salt on ice causes the ice to melt. Show numerical examples in your discussion. b. At a salt composition of 10%, what is the temperature at which ice will start melting? c. What is the eutectic temperature of the ice and salt combination?arrow_forwardChapter 6 1.arrow_forward
- docs.google.com 8 gel pores and capillaries decrease with the progress of 5 points cement hydration True False Other:arrow_forwardI need the answer as soon as possiblearrow_forward[14] Electrolysis process is based on : * O thermal effect of current O chemical effect of current O luminous effect of current magnetic effect of currentarrow_forward
- If the Ksp of Sn(OH)2 (s) is 5.33 x 10-27, what is the solubility of it in the unit of mg/L?arrow_forward(a) What is the physical significance of energy of activation ? Explain with diagram.(b) In general, it is observed that the rate of a chemical reaction doubles with every 10 degree rise in temperature. If the generalization holds good for the reaction in the temperature range of 295 K to 305 K, what would be the value of activation energy for this reaction ?[R = 8.314 J mol-1 K-1]arrow_forwardConsider the equilibrium system described by the chemical reaction below. A 1.00 L reaction vessel was filled with 2.00 mol SO2 and 2.00 mol NO2 and allowed to react at a high temperature. At equilibrium, there were 1.30 mol of NO in the vessel. Determine the concentrations of all reactants and products at equilibrium and then calculate the value of Kc for this reaction. SO:(g) + NO2(g)= SO:(g) + NO(g) 1 2 NEXT Based on the given values, fill in the ICE table to determine concentrations of all reactants and products. SO:(g) NO:(g) SO:(g) NO(g) + + Initial (M) Change (M) Equilibrium (M) RESET +x -X 1.00 2.00 1.30 -1.00 -1.30 2.30 2.70 0.70 1.35 2.00 - x 2.00 + x Activa Go to Se 1Larrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning