Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5.11P
(a)
To determine
The temperature at which first solid formed.
(b)
To determine
The chemical composition of first solid formed.
(c)
To determine
The temperature below which alloy is completely solid.
(d)
To determine
The phase present at room temperature, chemical composition of each phase and atom fraction of each phase present.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
For alloys of two hypothetical metals A and B, there exist an a, A-rich phase and a ß, B-rich phase.
From the mass fractions of both phases for two different alloys (given below), which are at the same temperature, determine
the composition of the phase boundary (or solubility limit) for the following:
Fraction Fraction
Alloy Composition
a Phase
B Phase
60 wt% A - 40 wt% B
0.59
0.41
30 wt% A - 70 wt% B
0.13
0.87
(a) a phase
wt% A
(b) B phase
wt% A
A magnesium-lead alloy of mass 6.4 kg consists of a solid a phase that has a composition just slightly below the solubility limit
at 300°C (570°F). The magnesium-lead phase diagram is shown in Animated Figure 9.20.
(a) What mass of lead is in the alloy?
i
kg
(b) If the alloy is heated to 400°C (750°F), how much more lead may be dissolved in the a phase without exceeding the
solubility limit of this phase?
kg
Need help with this question. Thank you :)
Chapter 5 Solutions
Materials Science And Engineering Properties
Ch. 5 - Prob. 1CQCh. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQ
Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - Prob. 13CQCh. 5 - Prob. 14CQCh. 5 - Prob. 15CQCh. 5 - Prob. 16CQCh. 5 - Prob. 17CQCh. 5 - Prob. 18CQCh. 5 - Prob. 19CQCh. 5 - Prob. 20CQCh. 5 - Prob. 21CQCh. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - Prob. 24CQCh. 5 - Prob. 25CQCh. 5 - Prob. 26CQCh. 5 - Prob. 27CQCh. 5 - Prob. 28CQCh. 5 - Prob. 29CQCh. 5 - Prob. 30CQCh. 5 - Prob. 31CQCh. 5 - Prob. 32CQCh. 5 - Prob. 33CQCh. 5 - Prob. 34CQCh. 5 - Prob. 35CQCh. 5 - Prob. 36CQCh. 5 - Prob. 1ETSQCh. 5 - Prob. 2ETSQCh. 5 - Prob. 3ETSQCh. 5 - Prob. 4ETSQCh. 5 - Prob. 5ETSQCh. 5 - Prob. 6ETSQCh. 5 - Prob. 7ETSQCh. 5 - Prob. 8ETSQCh. 5 - Prob. 9ETSQCh. 5 - Prob. 10ETSQCh. 5 - Prob. 11ETSQCh. 5 - Prob. 12ETSQCh. 5 - Prob. 1DRQCh. 5 - Prob. 2DRQCh. 5 - Prob. 3DRQCh. 5 - Prob. 5.1PCh. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - Prob. 5.4PCh. 5 - Prob. 5.5PCh. 5 - Prob. 5.6PCh. 5 - Prob. 5.7PCh. 5 - Prob. 5.8PCh. 5 - Prob. 5.9PCh. 5 - Prob. 5.10PCh. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. A 65 wt% Ni -35 wt% Cu alloy is heated to a temperature within the a + liquid phase region. If the composition of the a phase is 70 wt % Ni, determine i. The temperature of the alloy ii. The composition of the liquid phase iii. The mass fraction of both phases Composition (at% Ni) 20 40 60 80 100 1600 H 2800 1500 Liquid 1453°C 2600 1400 Solidus line Liquidus line 2400 1300 a +L 1200 2200 1100 A 2000 1085°C 1000 20 40 60 80 100 (Cu) Composition (wt% Ni) (Ni) Temperature (°C) Temperature (F)arrow_forward18 Material Science and Engineeringarrow_forwardWhich of the following alloys would form a complete substitutional solid solution? Metal 1 is BCC, metal 2 is FCC, and atomic radíus difference is 12%. Metal 1 is FCC, metal 2 is FCC, and atomic radius difference is 12%. Metal 1 is FCC, metal 2 is FCC, and atomic radíus difference is 15%. Metal 1 is HCP, metal 2 is FCC, and atomic radius differene is less than 15%. Metal 1 is BCC, metal 2 is BCC, and atomic radius difference is at least 15%.arrow_forward
- Q.1. For hypereutectoid plain carbon steel (select %C content yourself), determine the phases that are present, the compositions of these phases, and the percentages or fractions of the phases. Make schematic sketches of the microstructure that would be observed for conditions of very slow cooling at the following temperatures: a) Just above the austenite transformation temperature b) The austenite transformation temperature 10°C c) The eutectoid transformation temperature +10°C d) The eutectoid transformation temperature 10°Carrow_forwardPlease help me in 6. Thank you!!!arrow_forwardGiven a Cu-Ag alloy with a bulk composition of 30wt% Ag, answer the following: a. At what temperature does the first solid start to form? units: units: units: b. What is the elemental composition of this solid phase when it first appears? c. At what temperature does the material become fully solid? d. What is the elemental composition of the very last portion of liquid that is present just before the system fully transforms to solid? Temperature (°C) 1200 1000 800 A α B 8.0 (CE) units: Composition (at% Ag) 20 40 60 80 100 2200 -Liquidus Liquid 2000 -Solidus a +L 1800 F 1600 779°C (TE) B+L E G 71.9 91.2 1400 β (CE) (CBE) 600 Solvus α + β 400 C 200 0 20 40 (Cu) 1200 1000 800 600 H 400 60 80 100 (Ag) Composition (wt% Ag) Temperature (°F)arrow_forward
- Sketch a phase diagram for two soluble components. Show the melting temperature of each element. Label all axes, curves, and zones.arrow_forwardA mineral is an organic substance having usually a definite chemical composition and physical properties. It has .always homogeneous in nature True O False Oarrow_forward3.11 Each of the following statements describes a silicate mineral or mineral group. In each case, provide the appropriate name. a- The most common member of the amphibole group. b- The most common non ferromagnesian member of the mica family. c- The only silicate mineral made entirely of silicon and oxygen. d- A high-temperature silicate with a name that is based on its color. e-Characterized by striations. f- Originates as a product of chemical weathering.arrow_forward
- H.W3: Predict the ideal solubility of lead in bismuth at 280°C given that its melting point is 327°C and its enthalpy of fusion is 5.2 kJ mol-1, M.wt Bi=209 g/mol, M.wt Pb=209 g/mol.arrow_forwardMetal X has an atomic weight of 43.1 g/mol, theoretical density of 6.40 g/cm^3, and atomic radius of 122 pm. Determine whether the crystal structure of Metal X is BCC, FCC, or simple cubic. Provide your complete solution.arrow_forwardView Policies Current Attempt in Progress Using the Animated Figure 10.40, the isothermal transformation diagram for a 0.45 wt% C steel alloy, specify the nature of the final microstructure (in terms of the microconstituents present) of a small specimen that has been subjected to the following temperature treatments. In each case assume that the specimen begins at 845 °C and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure. a) Rapidly cool to 700 degrees C, hold for 100,000 s, then quench to room temperature. b) Rapidly cool to 450 degrees C, hold for 10 s, then quench to room temperature. proeutectoid ferrite + pearlite proeutectoid ferrite + martensite proeutectoid ferrite + pearlite + martensite eT proeutectoid ferrite + pearlite + bainite + martensite all spheroidite Save all bainite Attempts: 0 of 5 used Submit Answer all martensite bainite + martensitearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning