Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 11ETSQ
To determine
The process to form Bainite with eutectoid composition carbon steel at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The assembly consists of a brass shell (1) fully bonded to a solid ceramic core (2).
The brass shell [E = 115 GPa, a = 18.7 × 10-6/°C] has dout 50mm. and din
= 35mm.
The ceramic core [E = 290 GPa, α = 3.1 x 10-6/°C] has a diameter dout = 35mm.
At a temperature of 15°C, the assembly is unstressed. AT = 60°C.
Find the internal stress in the brass.
=
200 mm
Brass shell (1)
(2) Ceramic core
The assembly consists of a brass shell (1) fully bonded to a ceramic core (2). The brass shell [E = 86 GPa, α= 18 × 10−6/°C] has an outside diameter of 33 mm and an inside diameter of 27 mm. The ceramic core [E = 320 GPa, α= 2.5 × 10−6/°C] has a diameter of 27 mm. At a temperature of 15°C, the assembly is unstressed. Assume L = 320 mm. Determine the largest temperature increase Δt that is acceptable for the assembly if the normal stress in the longitudinal direction of the brass shell must not exceed 65 MPa.
Q.1. For hypereutectoid plain carbon steel (select %C content yourself), determine the phases that
are present, the compositions of these phases, and the percentages or fractions of the phases. Make
schematic sketches of the microstructure that would be observed for conditions of very slow
cooling at the following temperatures:
a) Just above the austenite transformation temperature
b) The austenite transformation temperature 10°C
c) The eutectoid transformation temperature +10°C
d) The eutectoid transformation temperature 10°C
Chapter 5 Solutions
Materials Science And Engineering Properties
Ch. 5 - Prob. 1CQCh. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQ
Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - Prob. 13CQCh. 5 - Prob. 14CQCh. 5 - Prob. 15CQCh. 5 - Prob. 16CQCh. 5 - Prob. 17CQCh. 5 - Prob. 18CQCh. 5 - Prob. 19CQCh. 5 - Prob. 20CQCh. 5 - Prob. 21CQCh. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - Prob. 24CQCh. 5 - Prob. 25CQCh. 5 - Prob. 26CQCh. 5 - Prob. 27CQCh. 5 - Prob. 28CQCh. 5 - Prob. 29CQCh. 5 - Prob. 30CQCh. 5 - Prob. 31CQCh. 5 - Prob. 32CQCh. 5 - Prob. 33CQCh. 5 - Prob. 34CQCh. 5 - Prob. 35CQCh. 5 - Prob. 36CQCh. 5 - Prob. 1ETSQCh. 5 - Prob. 2ETSQCh. 5 - Prob. 3ETSQCh. 5 - Prob. 4ETSQCh. 5 - Prob. 5ETSQCh. 5 - Prob. 6ETSQCh. 5 - Prob. 7ETSQCh. 5 - Prob. 8ETSQCh. 5 - Prob. 9ETSQCh. 5 - Prob. 10ETSQCh. 5 - Prob. 11ETSQCh. 5 - Prob. 12ETSQCh. 5 - Prob. 1DRQCh. 5 - Prob. 2DRQCh. 5 - Prob. 3DRQCh. 5 - Prob. 5.1PCh. 5 - Prob. 5.2PCh. 5 - Prob. 5.3PCh. 5 - Prob. 5.4PCh. 5 - Prob. 5.5PCh. 5 - Prob. 5.6PCh. 5 - Prob. 5.7PCh. 5 - Prob. 5.8PCh. 5 - Prob. 5.9PCh. 5 - Prob. 5.10PCh. 5 - Prob. 5.11PCh. 5 - Prob. 5.12PCh. 5 - Prob. 5.13PCh. 5 - Prob. 5.14PCh. 5 - Prob. 5.15PCh. 5 - Prob. 5.16PCh. 5 - Prob. 5.17PCh. 5 - Prob. 5.18PCh. 5 - Prob. 5.19P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please help me in 6. Thank you!!!arrow_forwardAt 170°C, what is the maximum solubility (a) of Pb in Sn and (b) of Sn in Pb? The lead-tin phase diagram is shown in the Animated Figure 9.8. (a) wt% Pb (b) i wt% Snarrow_forward2. In a copper-nickel system as shown in figure, an alloy composition of 35 wt% Ni was cooled down from the temperature of 1300°C. Sketch the expected microstructures at the point a, b, c, d and e and briefly describe the development of these microstructures in the equilibrium cooling. L. L (35 Ni) 1300 L (32 Ni) a (46 Ni) a(43 Ni) L (24 Ni) d 1200 1100 20 30 40 50 Composition (wt% Ni) Temperature (°C))arrow_forward
- 18 Material Science and Engineeringarrow_forwardFor alloys of two hypothetical metals A and B, there exist an a, A-rich phase and a ß, B-rich phase. From the mass fractions of both phases for two different alloys (given below), which are at the same temperature, determine the composition of the phase boundary (or solubility limit) for the following: Fraction Fraction Alloy Composition a Phase B Phase 60 wt% A - 40 wt% B 0.59 0.41 30 wt% A - 70 wt% B 0.13 0.87 (a) a phase wt% A (b) B phase wt% Aarrow_forwardA sufficient amount of pure copper is(4 to be heated for casting a large plate in an open mold. The plate has dimensions: length = 20 in, width=D10 in, and thickness =3 in. Compute the amount of heat that must be added to the metal to heat it to a temperature of 21500F for pouring. Assume that the amount of metal heated will be 10% more than what is needed to fill the mold cavity. Properties of the metal are: density=0.324 Ibm/in3, melting point = 19810F, specific heat of the %3D metal=0.093Btu/lbm-F in the solid state and 0.090 Btu/lbm-F in the liquid * .state, and heat of fusion = 80 Btu/lbmarrow_forward
- View Policies Current Attempt in Progress Using the Animated Figure 10.40, the isothermal transformation diagram for a 0.45 wt% C steel alloy, specify the nature of the final microstructure (in terms of the microconstituents present) of a small specimen that has been subjected to the following temperature treatments. In each case assume that the specimen begins at 845 °C and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure. a) Rapidly cool to 700 degrees C, hold for 100,000 s, then quench to room temperature. b) Rapidly cool to 450 degrees C, hold for 10 s, then quench to room temperature. proeutectoid ferrite + pearlite proeutectoid ferrite + martensite proeutectoid ferrite + pearlite + martensite eT proeutectoid ferrite + pearlite + bainite + martensite all spheroidite Save all bainite Attempts: 0 of 5 used Submit Answer all martensite bainite + martensitearrow_forwardA magnesium-lead alloy of mass 6.4 kg consists of a solid a phase that has a composition just slightly below the solubility limit at 300°C (570°F). The magnesium-lead phase diagram is shown in Animated Figure 9.20. (a) What mass of lead is in the alloy? i kg (b) If the alloy is heated to 400°C (750°F), how much more lead may be dissolved in the a phase without exceeding the solubility limit of this phase? kgarrow_forward26) Given the T-T-T curve below, select the process that will result in a microstructure of nearly all bainite. a. Cool to 400°C, hold for 20 seconds, then quench to room temperature b. Cool to 500°C, hold for 10 seconds, then quench to room temperature c. Quench to 125°C, hold for 10 seconds, then reheat to 600°C for more than 100 seconds d. Cool to 725°C, hold for 1,000 seconds, then quench to 125°C e. Cool to 600°C, hold for 1 second, the quench to room temperature Temperature (°C) f. none of the above 900 800 H A+C 1600 1400 700- 1200 A+P 600 P 1000 500H A+B 800 400- Temperature (°F) 4 A 300- M(start) 200 M(50%) 100- M(90%) 600 50% T 0 1 10 102 103 10 105 106 Time (s) 400 200 27) Fatigue failure situations are typically dependent upon which combination of the following factors? a. Slip plane, slip direction, and orientation of the applied load b. Yield strength, elastic modulus, and ductility of the material c. Temperature, time, and applied stress d. Stress amplitude, frequency of…arrow_forward
- H.W3: Predict the ideal solubility of lead in bismuth at 280°C given that its melting point is 327°C and its enthalpy of fusion is 5.2 kJ mol-1, M.wt Bi=209 g/mol, M.wt Pb=209 g/mol.arrow_forwardDescribe the basic properties of Halloysite.arrow_forward8 Induction hardening and flame hardening are two heat treatment methods that can be used to increase wear resistance of a material's surface while keeping the inner core tough. Which of the following is true? (A) Induction hardening uses an electric current. (B) Flame hardening requires a longer quench time. (C) Induction hardening has a lower operating temperature. (D) Flame hardening results in smaller grains in its structure. jes (A) emsed anilisted (81) sig auc agniwash evilosque (0) grinore 2 (C)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning