Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 38P
State Space SS
38. Consider the rotational
a. Represent the system as a signal-flow graph.
b. Represent the system in state space if the output is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please solve this for me! Thanks!
Q2
In the rotating system shown in Figure Q2. The torque T applied to the rotor
and generate the output angular velocity, w.
(a) Determine equations of motion system interm of angular displacement, 0.
(b) By referring Q2(a), determine the state-space model of the system.
Rotor
T
Figure Q2
Obtain the state space model of the system shown below. Use equations for control theory state space modeling.
Chapter 5 Solutions
Control Systems Engineering
Ch. 5 - Prob. 1RQCh. 5 - Name three basic forms for interconnecting...Ch. 5 - For each of the forms in Question 2, state...Ch. 5 - Besides knowing the basic forms as discussed in...Ch. 5 - For a simple, second-order feedback control system...Ch. 5 - Prob. 6RQCh. 5 - Prob. 7RQCh. 5 - How are summing junctions shown on a signal-flow...Ch. 5 - If a forward path touched all closed loops, what...Ch. 5 - Name five representations of systems in state...
Ch. 5 - Prob. 11RQCh. 5 - Which form of the state-space representation leads...Ch. 5 - When the system matrix is diagonal, what...Ch. 5 - What terms lie along the diagonal for a system...Ch. 5 - Prob. 15RQCh. 5 - Prob. 16RQCh. 5 - For what kind of system would you use the observer...Ch. 5 - Describe state-vector transformations from the...Ch. 5 - Prob. 19RQCh. 5 - Prob. 20RQCh. 5 - Prob. 21RQCh. 5 - Find the closed-loop transfer function, T(s) =...Ch. 5 - Find the equivalent transfer function, T(s) =...Ch. 5 - Reduce the system shown in Figure P5.4 to a single...Ch. 5 - Reduce the block diagram shown in Figure P5.6 to a...Ch. 5 - Find the unity feedback system that is equivalent...Ch. 5 - 8. Given the block diagram of a system shown in...Ch. 5 - 9. Reduce the block diagram shown in Figure P5.9...Ch. 5 - Reduce the block diagram shown in Figure P5.10 to...Ch. 5 - 11. For the system shown in Figure P5.11, find the...Ch. 5 - 12. For the system shown in Figure P5.12, find the...Ch. 5 - Prob. 13PCh. 5 - For the system of Figure P5.14, find the value of...Ch. 5 - 15. For the system shown in Figure P5.15, find K...Ch. 5 - For the system of Figure P5.16, find the values of...Ch. 5 - Find the following for the system shown in Figure...Ch. 5 - 18. For the system shown in Figure P5.18, find ,...Ch. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Find the transfer function G(s) = Eo(s)/T(s) for...Ch. 5 - Prob. 22PCh. 5 - Prob. 23PCh. 5 - State Space SS
24. Given the system below, draw a...Ch. 5 - Prob. 25PCh. 5 - Using Mason’s rule, find the transfer function,...Ch. 5 - Using Mason’s rule, find the transfer function,...Ch. 5 - Prob. 28PCh. 5 - Use block diagram reduction to find the transfer...Ch. 5 - State Space SS 30. Represent the following systems...Ch. 5 - Prob. 31PCh. 5 - State Space SS 32. Repeat Problem 31 and represent...Ch. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Repeat Problem 34 for the system shown in Figure...Ch. 5 - Prob. 37PCh. 5 - State Space SS 38. Consider the rotational...Ch. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - State Space SS
42. Consider the subsystems shown...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - State Space SS
45. Diagonalize the following...Ch. 5 - Prob. 46PCh. 5 - Prob. 48PCh. 5 - Prob. 51PCh. 5 - Figure P5.33 shows a noninverting operational...Ch. 5 - Figure P5.34 shows the diagram of au inverting...Ch. 5 - Prob. 54PCh. 5 - A car active suspension system adds an active...Ch. 5 - Prob. 58PCh. 5 - Prob. 60PCh. 5 - Some medical procedures require the insertion of a...Ch. 5 - Prob. 62PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - The purpose of an Automatic Voltage Regulator is...Ch. 5 - 68. Integrated circuits are manufactured through a...Ch. 5 - Prob. 69PCh. 5 - Prob. 72PCh. 5 - Prob. 73PCh. 5 - Assume ideal operational amplifiers in the circuit...Ch. 5 - Parabolic trough collector. Effective controller...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3m ä+4cx+2kx = 4cj+3ky For the system given above, obtain the state-space representation.arrow_forwarddoes such a decomposition end up using more bandwidth. (This is an exa Consider the mechanical system shown in the figure below. Suppose the system input u is the velocity d₁, its output y is the velocity d2, and its states ar are the position d2 and velocity d2. Obtain a state-space model of the form i = Ar + Bu and y = Cr + Du describing the system. d₂ d₁ b m k₂arrow_forwardFind: State-space representation Note: Output of mechanical system is X3(t) Given: M1=1 kg, M2=1 kg, M3=1 kg K1=1 N/m, K2=1 N/m Fv1=1 N-s/m, Fv2=1 N-s/m, Fv3=1 N-s/m, Fv4=1 N-s/marrow_forward
- on of nd 25. For the system shown in Figure P4.7, do the following: [Section: 4.6] a. Find the transfer function G(s) = X(s)/F(s). b. Find , n, %OS, Ts, Tp, Tr, and Cfinal for a unit-step input. 20 N/m oooo 2 N-s/m 5 kg x(1) FIGURE P4.7 f(1)arrow_forward5arrow_forwardOne of the beneficial applications of an automotive control system is the active control of the suspension system. One feedback control system uses a shock absorber consisting of a cylinder filled with a compressible fluid that provides both spring and damping forces. The cylinder has a plunger activated by a gear motor, a displacement-measuring sensor, and a piston. Spring force is generated by piston displacement, which compresses the fluid. During piston displacement, the pressure imbalance across the piston is used to control damping. The plunger varies the internal volume of the cylinder. This system is shown in Fig.la. The system can be represented by the block diagram shown in Fig. 1b, where: Control output Plunger Gear motor Cylinder Controller Piston Liquid Sensor output Damping orifice Piston travel Piston rod Fig.la: Shock absorberarrow_forward
- Consider the following state space system 1 B = 1 C =[1 0] D=[0] -5 -6 1- Check the controllability of the system. 2- Check the observability of the systemarrow_forwardDerive the state-space model (state equation and output equation) in vector form for the following system. The system outputs are the displacements of each spring. Assume that the connection between the spring and rope is massless and that the rope is inextensible. Assume that gravity is an input as well as the applied forces Fi(t) and F2(t). Neglect friction forces on mass m₂. If q₁ is the state variable for the bottom spring connected to m₁, q2 is the state variable for the mass m₁, q3 is the the top spring connected to the pulley, and q4 is the state variable connected to the mass m2, then you should expect to get the following state-space representation: 92 43 y 0 LaLa (L+L) 0 4₂ kL₂ mi Li 0 m2 0 13 (L+L) 0 CA = - [8] 92 93 + 92 93 + L94 m₂ F₂(t) m₂ TOL F₂(t) Figure 2: Diagram for problem 2 X5 00 X2 [000] 00 U₁ U12 U13 m₂. 21 142 143arrow_forwardFind a state space representation for the network shown below when the output is the displacement at M3.arrow_forward
- Consider the following mechanical system: k m +f b d²y(t) +b- dy(t) + ky(t) = f (t) m %3D dt? dt Obtain the state space model of the system with input f (t) and output y(t). Calculate the system matrices for m = 1, k = 1 and b = 2. Check the stability by using the second method of Lyapunov. 3.arrow_forwardi need the answer quicklyarrow_forwarda) Determine the state space representation for the translational mechanical system shown in Figure Q4(a), where force, f(t) and displacement, x(t) are the input and output of the system respectively. Use these state variables in your answer. oooo K M -x(1) -ƒ(1)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license