Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 9RQ
If a forward path touched all closed loops, what would be the value of k?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Reduce the block diagram to a single transfer function.
1
Find the transfer function X(s)/G(s) of the block diagram below.
Chapter 5 Solutions
Control Systems Engineering
Ch. 5 - Prob. 1RQCh. 5 - Name three basic forms for interconnecting...Ch. 5 - For each of the forms in Question 2, state...Ch. 5 - Besides knowing the basic forms as discussed in...Ch. 5 - For a simple, second-order feedback control system...Ch. 5 - Prob. 6RQCh. 5 - Prob. 7RQCh. 5 - How are summing junctions shown on a signal-flow...Ch. 5 - If a forward path touched all closed loops, what...Ch. 5 - Name five representations of systems in state...
Ch. 5 - Prob. 11RQCh. 5 - Which form of the state-space representation leads...Ch. 5 - When the system matrix is diagonal, what...Ch. 5 - What terms lie along the diagonal for a system...Ch. 5 - Prob. 15RQCh. 5 - Prob. 16RQCh. 5 - For what kind of system would you use the observer...Ch. 5 - Describe state-vector transformations from the...Ch. 5 - Prob. 19RQCh. 5 - Prob. 20RQCh. 5 - Prob. 21RQCh. 5 - Find the closed-loop transfer function, T(s) =...Ch. 5 - Find the equivalent transfer function, T(s) =...Ch. 5 - Reduce the system shown in Figure P5.4 to a single...Ch. 5 - Reduce the block diagram shown in Figure P5.6 to a...Ch. 5 - Find the unity feedback system that is equivalent...Ch. 5 - 8. Given the block diagram of a system shown in...Ch. 5 - 9. Reduce the block diagram shown in Figure P5.9...Ch. 5 - Reduce the block diagram shown in Figure P5.10 to...Ch. 5 - 11. For the system shown in Figure P5.11, find the...Ch. 5 - 12. For the system shown in Figure P5.12, find the...Ch. 5 - Prob. 13PCh. 5 - For the system of Figure P5.14, find the value of...Ch. 5 - 15. For the system shown in Figure P5.15, find K...Ch. 5 - For the system of Figure P5.16, find the values of...Ch. 5 - Find the following for the system shown in Figure...Ch. 5 - 18. For the system shown in Figure P5.18, find ,...Ch. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - Find the transfer function G(s) = Eo(s)/T(s) for...Ch. 5 - Prob. 22PCh. 5 - Prob. 23PCh. 5 - State Space SS
24. Given the system below, draw a...Ch. 5 - Prob. 25PCh. 5 - Using Mason’s rule, find the transfer function,...Ch. 5 - Using Mason’s rule, find the transfer function,...Ch. 5 - Prob. 28PCh. 5 - Use block diagram reduction to find the transfer...Ch. 5 - State Space SS 30. Represent the following systems...Ch. 5 - Prob. 31PCh. 5 - State Space SS 32. Repeat Problem 31 and represent...Ch. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Repeat Problem 34 for the system shown in Figure...Ch. 5 - Prob. 37PCh. 5 - State Space SS 38. Consider the rotational...Ch. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - State Space SS
42. Consider the subsystems shown...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - State Space SS
45. Diagonalize the following...Ch. 5 - Prob. 46PCh. 5 - Prob. 48PCh. 5 - Prob. 51PCh. 5 - Figure P5.33 shows a noninverting operational...Ch. 5 - Figure P5.34 shows the diagram of au inverting...Ch. 5 - Prob. 54PCh. 5 - A car active suspension system adds an active...Ch. 5 - Prob. 58PCh. 5 - Prob. 60PCh. 5 - Some medical procedures require the insertion of a...Ch. 5 - Prob. 62PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - The purpose of an Automatic Voltage Regulator is...Ch. 5 - 68. Integrated circuits are manufactured through a...Ch. 5 - Prob. 69PCh. 5 - Prob. 72PCh. 5 - Prob. 73PCh. 5 - Assume ideal operational amplifiers in the circuit...Ch. 5 - Parabolic trough collector. Effective controller...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Suppose you want to solve the following LP: maxcTx: Ax≤b, but unfortunately it is infeasible (think e.g. about an inventory problem where the demand cannot be satisfied by the warehouse). Let A ∈ Rm×n. Now suppose you can “augment” your LP by buying some more slack in your problem (think e.g. of buying some of the product from other warehouses). In particular, for i = 1, . . . , m, if you want to increase the right-hand side of the i-th constraint by some value λi, you will pay diλi for some fixed number di. Suppose moreover that the right-hand side of the i-th constraint can be augmented by at most ki, for i = 1,...,m. How can you find the optimal augmentation, i.e. the one that maximizes the profit of the optimal solution of the augmented LP minus the cost for the augmentation?arrow_forwardPARTS A and B ( Label Them ) SOLVE CAREFULLY!! Please Write Clearly and Box the final Answer for botharrow_forwardIn this problem, you will have to first create a Python function called twobody_dynamics_first_order_EoMS. Given a time t and a state vector X, this function will return the derivatives of the state vector. Mathematically, this means you are computing X using some dynamics equation X = f(t, X). Once you have this function in Python, you can solve the differential equations it contains by using solve_ivp. The command will be similar to, but not necessarily exactly, what is shown below: solve_ivp(simple_pendulum_first_order_EoMS, t_span, initial_conditions, args=constants, rtol 1e-8, atol 1e-8) which integrates the differential equations of motion to give us solutions to the states (i.e., position and velocity of a satellite). In the above, t_span contains the initial time to and final time tƒ and it will compute the solution at every instant of time (you will define this later in Problem 1.3 below). The integration is done with initial state vector Xo which defines the initial position…arrow_forward
- Give a physical example for feedback control systems. Sketch the block diagram with input and output variables: Missile launch systemarrow_forwardFor the system whose block diagram is shown in Fig.1, find the overall transfer function by using block diagram reduction techniques. R(s) H Garrow_forward1) a) Derive the mathematical model for the system shown below. b) Find a state variable model (matrix form) for the system. b) Determine state matrix, input matrix, and output matrix, when f (t) is defined as the input and X2 is defined as output for the system. (Here, both of the X1 and x2 , are time-dependent functions) » f(t) X1 X2 3,000 N 1,000 N 4,000 30 kg 20 kg 200 유 N.sarrow_forward
- Consider the following Initial Value Problem (IVP) dy /at = -t * sin (y); y(t = 0) =1 Solve for y(t=0.5) using a) Forward Euler method with At = 0.25. (Solve by hand) Develop a Matlab script that solves for y (t = 5) using Forward Euler method. Use the time step levels given below and plot t vs y in the same plot. Include the plot with the right format (axis labels, legends, ...) in your solution sheet and include your Matlab script in the solution as well. i) At = 0.25 ii) At = 0.125 b) Backward Euler method with At = 0.25 (Solve by hand)arrow_forwardThe input and output relationship of a process plant is given by: 3s+1 Y(s) = U(s) s3+9s2+26s+ 24 Identify the correct diagonal canonical form for the process plant system from the list below: (Note: You should select the correct answer number and also provide us with the calculation notes. Remember, all your calculation notes must be attached and uploaded as a separate document. It should be clean and readable with question numbers and their corresponding solution notes. Failure to provide this calculation notes could result in the candidate being awarded zero marks. Also, you may use MATLAB or any other calculation tools to cross-check answers should you wish to). O a. -2 0 0 x = 0 -3 0 x+1|u; y = [2.5 6 8]x 0 0 -4] O b. 4 0 0 x = 0 -3 0 0 -2] -0.31 0 x+ 0.3 u; y = [18 26 9]x [-0.3] O c. 4 0 0 -2.51 x = -3 0x+ u; y = [0 3 1]x 0 0 -21 -5.5 O d. None of the abovearrow_forwardFind the transfer function C(s)/R(s) by block-reduction technique.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Relationship Between Elastic Constants and Connecting Equations; Author: Engineers Academy;https://www.youtube.com/watch?v=whW5PnM7Pug;License: Standard Youtube License