Concept explainers
One of the chemical controversies of the nineteenth century concerned the element beryllium (Be). Berzelius originally claimed that beryllium was a trivalent element (forming Be3+ ions) and that it gave an oxide with the formula Be2O3. This resulted in a calculated
I | II | |
Mass | 0.2022 g | 0.2224 g |
Volume | 22.6 cm3 | 26.0 cm3 |
Temperature | 13°C | 17°C |
Pressure | 765.2 mm Hg | 764.6 mm |
If beryllium is a divalent metal, the molecular formula of the product will be Be(C5H7O2)2; if it is trivalent, the formula will be Be(C5H7O2)3. Show how Combes’s data help to confirm that beryllium is a divalent metal.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Chemistry
- 62 Ammonium dinitramide (ADN), NH4N(NO2)2, was considered as a possible replacement for aluminium chloride as the oxidizer in the solid fuel booster rockets used to launch the space shuttle. When detonated by a spark, AND rapidly decomposes to produce a gaseous mixture of N2,O2, and H2O. (This is not a combustion reaction. The ADN is the only reactant.) The reaction releases a lot of heat, so the gases are initially formed at high temperature and pressure. The thrust of the rocket results mainly from the expansion of this gas mixture. Suppose a 2.3-kg sample of ADN is denoted and decomposes completely to give N2,O2, and H2O. If the resulting gas mixture expands until it reaches a temperature of 100°C and a pressure of 1.00 atm, what volume will it occupy? Is your answer consistent with the proposed use of ADN as a rocket fuel?arrow_forwardIf an electric current is passed through molten sodium chloride, elemental chlorine gas is generated as the sodium chloride is decomposed. :math>2NaCl(1)2Na(s)+Cl2(g) at volume of chlorine gas measured at 767 mm Hg at 25 °C would be generated by complete decomposition of 1.25 g of NaCl?arrow_forwardHow does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forward
- What possible uses exist for the natural gas liquids that are removed from natural gas during its processing?arrow_forwardWhen calcium carbonate is heated strongly, it evolves carbon dioxide gas. CaCO3(s)CaO(s)+CO2(g) 25 g of CaCO3 is heated, what mass of CO2would be produced? What volume would this quantity of CO2 (CU at STP?arrow_forwardWhat volume (in liters) of O2, measured at standard temperature and pressure, is required to oxidize 0.400 mol of phosphorus (P4)? P4(s) + 5 O2(g) P4O10(s)arrow_forward
- A 6.53 g sample of mixture of magnesium carbonate and calcium carbonate is treated with excess hydrochloric acid. The resulting reaction produces 1.71 L of carbon dioxide gas @28.0 degrees C and 735 torr pressure.arrow_forward5. An experiment is performed to measure the mass percent of CaCO3(s) in eggshells. Five different samples of CaCO3(s) of known mass react with an excess of 2.0M HCl(aq) in identical sealed, rigid reaction vessels. The pressure of the gas produced is measured with a pressure gauge attached to the reaction vessel. Since the reaction is exothermic, the reaction system is cooled to its original temperature before Cooling the HCl(aq) to a lower temperature than it was in the original experiment the pressure is recorded. The experimental data are used to create the calibration line below. Using eggshells that are more finely powdered than those used in the original experiment 0.10- 0.09 0.08- Using 2.0M CH3COOH(aq) instead of 2.0M HCl(aq) 0.07 * 0.06- Reducing the volume of the reaction vessel 0.05 0.04 CLEAR ALL 0.03- 0.02- 0.05 0.10 0.15 0.20 Mass of CaCO3(s) (grams) The experiment is repeated with an eggshell sample, and the experimental data are recorded in the table below. Mass of…arrow_forwardA flask at room temperature contains equal numbers of di-nitrogen molecules and krypton atoms. (a) Which of the two gases exerts the higher partial pressure? (b) Which gas has a higher kinetic energy per molecule/atom? (c) Which gas has molecules with a higher velocity? Explain your answers.arrow_forward
- 1.44. The van der Waals constant b can be used to estimate molecular sizes, assuming the molecules are shaped like spheres: 1. Convert b to units of m³/mol, using the fact that 1 m³ = 1000 L. 2. Divide by Avogadro's number to get the individual molecular contribution to b. 3. Use V = 4/3 πr³ to estimate the radius of the molecule. Using these steps, estimate the sizes of (a) He (b) H₂O (c) C₂H6-arrow_forwardG.319.arrow_forwardpls answer no. 13arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning