Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.5, Problem 88P
An electronic device dissipating 25 W has a mass of 20 g and a specific heat of 850 J/kg·°C. The device is lightly used, and it is on for 5 min and then off for several hours, during which it cools to the ambient temperature of 25°C. Determine the highest possible temperature of the device at the end of the 5-min operating period. What would your answer be if the device were attached to a 0.5-kg aluminum heat sink? Assume the device and the heat sink to be nearly isothermal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Heat transfer
169 g of solid water (i.e. ice), at -17 °C, is placed into a sealed, insulated container with a volume of 0.29 m^3. A 1457 W heater is
used to heat and change the phase of the sample until it is a gaseous water (i.e. steam). The heater runs for 433 s.
What is the pressure, in kPa, of the gaseous water in the container at the end of the heating process?
Round your answer to the first decimal place.
Propane (MW = 44 ; k = 1.13) initially at 30 psia and 215°F, is
stored inside a large spherical vessel having a diameter of 10
ft. If the temperature is increased to 635°F.
Determine the following:
- Constant Volume Specific heat in BTU/lbm.R
- Change in Internal Energy, AUU in BTU
Chapter 4 Solutions
Thermodynamics: An Engineering Approach
Ch. 4.5 - Is the boundary work associated with...Ch. 4.5 - On a P-V diagram, what does the area under the...Ch. 4.5 - An ideal gas at a given state expands to a fixed...Ch. 4.5 - Calculate the total work, in kJ, for process 13...Ch. 4.5 - Calculate the total work, in Btu, produced by the...Ch. 4.5 - Nitrogen at an initial state of 300 K, 150 kPa,...Ch. 4.5 - The volume of 1 kg of helium in a pistoncylinder...Ch. 4.5 - A pistoncylinder device with a set of stops...Ch. 4.5 - A mass of 5 kg of saturated water vapor at 150 kPa...Ch. 4.5 - A frictionless pistoncylinder device contains 16...
Ch. 4.5 - 1 m3 of saturated liquid water at 200C is expanded...Ch. 4.5 - Argon is compressed in a polytropic process with n...Ch. 4.5 - A gas is compressed from an initial volume of 0.42...Ch. 4.5 - A mass of 1.5 kg of air at 120 kPa and 24C is...Ch. 4.5 - During some actual expansion and compression...Ch. 4.5 - A frictionless pistoncylinder device contains 5 kg...Ch. 4.5 - During an expansion process, the pressure of a gas...Ch. 4.5 - A pistoncylinder device initially contains 0.4 kg...Ch. 4.5 - A pistoncylinder device contains 0.15 kg of air...Ch. 4.5 - Determine the boundary work done by a gas during...Ch. 4.5 - 1 kg of water that is initially at 90C with a...Ch. 4.5 - An ideal gas undergoes two processes in a...Ch. 4.5 - A pistoncylinder device contains 50 kg of water at...Ch. 4.5 - Prob. 26PCh. 4.5 - A closed system like that shown in Fig. P427E is...Ch. 4.5 - A rigid container equipped with a stirring device...Ch. 4.5 - Complete each line of the following table on the...Ch. 4.5 - A substance is contained in a well-insulated rigid...Ch. 4.5 - A 0.5-m3rigid tank contains refrigerant-134a...Ch. 4.5 - A 20-ft3 rigid tank initially contains saturated...Ch. 4.5 - A rigid 10-L vessel initially contains a mixture...Ch. 4.5 - A rigid 1-ft3 vessel contains R-134a originally at...Ch. 4.5 - A pistoncylinder device contains 5 kg of...Ch. 4.5 - A pistoncylinder device contains 0.5 lbm of water...Ch. 4.5 - 2 kg of saturated liquid water at 150C is heated...Ch. 4.5 - An insulated pistoncylinder device contains 5 L of...Ch. 4.5 - A 40-L electrical radiator containing heating oil...Ch. 4.5 - Steam at 75 kPa and 8 percent quality is contained...Ch. 4.5 - A pistoncylinder device initially contains 0.6 m3...Ch. 4.5 - An insulated tank is divided into two parts by a...Ch. 4.5 - Two tanks (Tank A and Tank B) are separated by a...Ch. 4.5 - Is the energy required to heat air from 295 to 305...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - A fixed mass of an ideal gas is heated from 50 to...Ch. 4.5 - Is the relation u = mcv,avgT restricted to...Ch. 4.5 - Is the relation h = mcp,avgT restricted to...Ch. 4.5 - What is the change in the internal energy, in...Ch. 4.5 - Neon is compressed from 100 kPa and 20C to 500 kPa...Ch. 4.5 - What is the change in the enthalpy, in kJ/kg, of...Ch. 4.5 - A mass of 10 g of nitrogen is contained in the...Ch. 4.5 - Determine the internal energy change u of...Ch. 4.5 - Determine the enthalpy change h of oxygen, in...Ch. 4.5 - Is it possible to compress an ideal gas...Ch. 4.5 - Nitrogen in a rigid vessel is cooled by rejecting...Ch. 4.5 - Nitrogen at 100 psia and 300F in a rigid container...Ch. 4.5 - A pistoncylinder device containing carbon-dioxide...Ch. 4.5 - A 3-m3 rigid tank contains hydrogen at 250 kPa and...Ch. 4.5 - 1 kg of oxygen is heated from 20 to 120C....Ch. 4.5 - A 10-ft3 tank contains oxygen initially at 14.7...Ch. 4.5 - A 4-m 5-m 7-m room is heated by the radiator of...Ch. 4.5 - An insulated rigid tank is divided into two equal...Ch. 4.5 - An ideal gas contained in a pistoncylinder device...Ch. 4.5 - A 4-m 5-m 6-m room is to be heated by a...Ch. 4.5 - An insulated pistoncylinder device initially...Ch. 4.5 - Argon is compressed in a polytropic process with n...Ch. 4.5 - An insulated pistoncylinder device contains 100 L...Ch. 4.5 - Air is contained in a variable-load pistoncylinder...Ch. 4.5 - A mass of 15 kg of air in a pistoncylinder device...Ch. 4.5 - Prob. 73PCh. 4.5 - A pistoncylinder device contains 2.2 kg of...Ch. 4.5 - A pistoncylinder device contains 4 kg of argon at...Ch. 4.5 - A spring-loaded pistoncylinder device contains 5...Ch. 4.5 - Prob. 78PCh. 4.5 - Prob. 79PCh. 4.5 - A 1-kg block of iron is heated from 25 to 75C....Ch. 4.5 - The state of liquid water is changed from 50 psia...Ch. 4.5 - During a picnic on a hot summer day, all the cold...Ch. 4.5 - An ordinary egg can be approximated as a...Ch. 4.5 - Consider a 1000-W iron whose base plate is made of...Ch. 4.5 - Stainless steel ball bearings ( = 8085 kg/m3 and...Ch. 4.5 - In a production facility, 1.6-in-thick 2-ft 2-ft...Ch. 4.5 - Long cylindrical steel rods ( = 7833 kg/m3 and cp...Ch. 4.5 - An electronic device dissipating 25 W has a mass...Ch. 4.5 - Prob. 90PCh. 4.5 - Prob. 91PCh. 4.5 - Is the metabolizable energy content of a food the...Ch. 4.5 - Is the number of prospective occupants an...Ch. 4.5 - Prob. 94PCh. 4.5 - Prob. 95PCh. 4.5 - Prob. 96PCh. 4.5 - Consider two identical 80-kg men who are eating...Ch. 4.5 - A 68-kg woman is planning to bicycle for an hour....Ch. 4.5 - A 90-kg man gives in to temptation and eats an...Ch. 4.5 - A 60-kg man used to have an apple every day after...Ch. 4.5 - Consider a man who has 20 kg of body fat when he...Ch. 4.5 - Consider two identical 50-kg women, Candy and...Ch. 4.5 - Prob. 103PCh. 4.5 - Prob. 104PCh. 4.5 - Prob. 105PCh. 4.5 - Prob. 106PCh. 4.5 - Prob. 107PCh. 4.5 - Prob. 108PCh. 4.5 - Prob. 109RPCh. 4.5 - Prob. 110RPCh. 4.5 - Prob. 111RPCh. 4.5 - Prob. 112RPCh. 4.5 - Prob. 113RPCh. 4.5 - Consider a pistoncylinder device that contains 0.5...Ch. 4.5 - Prob. 115RPCh. 4.5 - Air in the amount of 2 lbm is contained in a...Ch. 4.5 - Air is expanded in a polytropic process with n =...Ch. 4.5 - Nitrogen at 100 kPa and 25C in a rigid vessel is...Ch. 4.5 - Prob. 119RPCh. 4.5 - A mass of 3 kg of saturated liquidvapor mixture of...Ch. 4.5 - A mass of 12 kg of saturated refrigerant-134a...Ch. 4.5 - Prob. 122RPCh. 4.5 - A pistoncylinder device contains helium gas...Ch. 4.5 - Prob. 124RPCh. 4.5 - Prob. 125RPCh. 4.5 - Prob. 126RPCh. 4.5 - Prob. 127RPCh. 4.5 - Water is boiled at sea level in a coffeemaker...Ch. 4.5 - The energy content of a certain food is to be...Ch. 4.5 - Prob. 130RPCh. 4.5 - An insulated pistoncylinder device initially...Ch. 4.5 - An insulated rigid tank initially contains 1.4 kg...Ch. 4.5 - In order to cool 1 ton of water at 20C in an...Ch. 4.5 - A 0.3-L glass of water at 20C is to be cooled with...Ch. 4.5 - A well-insulated 3-m 4m 6-m room initially at 7C...Ch. 4.5 - Prob. 137RPCh. 4.5 - Prob. 138RPCh. 4.5 - Prob. 140RPCh. 4.5 - A pistoncylinder device initially contains 0.35 kg...Ch. 4.5 - Two 10-ft3 adiabatic tanks are connected by a...Ch. 4.5 - Prob. 143RPCh. 4.5 - Prob. 144RPCh. 4.5 - A 3-m3 rigid tank contains nitrogen gas at 500 kPa...Ch. 4.5 - A 0.5-m3 rigid tank contains nitrogen gas at 600...Ch. 4.5 - A well-sealed room contains 60 kg of air at 200...Ch. 4.5 - A room contains 75 kg of air at 100 kPa and 15C....Ch. 4.5 - Prob. 149FEPCh. 4.5 - A pistoncylinder device contains 5 kg of air at...Ch. 4.5 - Prob. 151FEPCh. 4.5 - A 2-kW electric resistance heater submerged in 5...Ch. 4.5 - Prob. 153FEPCh. 4.5 - 1.5 kg of liquid water initially at 12C is to be...Ch. 4.5 - Prob. 155FEPCh. 4.5 - An ordinary egg with a mass of 0.1 kg and a...Ch. 4.5 - Prob. 157FEPCh. 4.5 - A 6-pack of canned drinks is to be cooled from 18C...Ch. 4.5 - Prob. 159FEPCh. 4.5 - An ideal gas has a gas constant R = 0.3 kJ/kgK and...Ch. 4.5 - A pistoncylinder device contains an ideal gas. The...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Propane (MW = 44 ; k = 1.13) initially at 30 psia and 215°F, is stored inside a large spherical vessel having a diameter of 10 ft. If the temperature is increased to 635°F. Determine the following: a. Final pressure in psi b. Mass of propane in Ibm c. Constant Volume Specific heat in BTU/lbm d. Change in Internal Energy, AUU in BTUarrow_forwardMost automobiles have a coolant reservoir to catch radiator fluid that may overflow when the engine is hot. Such a radiator, made of copper, is filled to its 12-L capacity when at 10.0°C. -What volume of radiator fluid, in liters, will overflow when the radiator and fluid reach their 99.5°C operating temperature, given that the fluid’s thermal coefficient of volume expansion is 400.0 × 10-6 / °C? The coefficient of volume expansion for copper is 5.1 × 10-5 /°C.arrow_forward2. 3 mol of air are contained in a piston-cylinder system with a surface of S = 5 m², loaded with a spring. The piston-cylinder system lies in a vertical plane, such that gravity acts on the piston. The initial pressure and temperature of the system are 25 kPa and 750 K, respectively. In the initial condition, the spring is unstretched. Heat is transferred from the air in the cylinder, which is cooled down to 200 K. In this quasi-static process, the volume is reduced to a third of the original one, stretching the spring. At the end of the cooling process, the spring snaps and the piston falls down, compressing the gas. This transformation happens fast, so that no heat is exchanged, but the transformation is non-quasi static. The end state of this compression is an equilibrium, with a volume equal to 85% of its value at the end of the quasi-static cooling process. Find: i) the heat that is transferred from the air within the cylinder during the quasi-static cooling, before the snapping…arrow_forward
- A 30.14 g stainless steel ball bearing at 117.82°C is placed in a constant-pressure calorimeter containing 120 mL of water at 18.44°C. If the specific heat of the ball bearing is 0.474 J/g-°C, calculate the final temperature of the water. Assume the calorimeter to have negligible heat capacity. Specific heat of water is 4.184 J/g-°C .arrow_forwardA tank of air is expanded via heat transfer at a constant pressure such that its volume is 2.5 times its original volume. If the initial temperature of the tank was 23 Celsius, what is the amount of heat transfer required for this process in kJ/kg? Calculate this with the following 3 approaches: Constant Specific Heats (use the average temp) The equation as seen on table A-2 Air property tablesarrow_forwardA mass of 200 kg of water at 20°C is stored in a tank. An engine coupled to a propeller inside the tank transfers energy into the water causing it to heat up. What will be the water temperature after two hours with the engine running continuously? It is known that the engine power is 5 HP. (1 HP ≅ 0.75 kW). Take it out that the system has perfect thermal insulation.arrow_forward
- Question 1.: A sample of 6.25 kilograms of water at 7.00°C is placed in the freezer. Assuming all energy removed from the freezer is removed from the water, how long does the 1/5 horsepower (HP) motor (1 HP = 746 Watts) have to run to cool all of the liquid to ice at 0.00°C? The freezer has a COP of 5.00. Your challenge: come up with a complete equation solved for the variable in question before you plug in any of the numerical values given above. In this way, you will be prepared to solve for any of the variables! Some questions to consider along the way ... (a.) What is the relationship between power, P (in watts) and work, W (in joules)? What is the variable you are eventually solving for? (b.) What is the relationship between the COP a freezer/refrigerator, and work? (c.) How much energy as heat must be removed from the water to freeze it? What heat pump/refrigerator variable does this value correspond to? freezer run time = S = minutesarrow_forwardTHERMODYNAMICS 11 kg of air is heated from 24 to 84 degrees Celsius in a piston-cylinder device by passing electricity via a resistive heater within the cylinder. The pressure within the cylinder is remained constant at 300kPa during the procedure, and a 78kJ heat loss occurs. What is the kWh value of the supplied electric energy?arrow_forwardCompute the heat rejected in KJ from a cylinder containing Steam at 2 MPa and 250°C if it is rigid and is cooled until the pressure is 1.5 MPa. The mass of the steam is 15.169 kg.arrow_forward
- A piece of steel of mass 0.9 kg has a temperature of 95°C. It is immersed in a copper calorimeter which contains 0.45 kg of water at a temperature of 20°C. The final temperature of the calorimeter system, after cooling correction had been taken into account, became 32°C. If the specific heat capacity of steel is 480 J/kgK and that of copper is 394 J/kgK, determine the water equivalent of the calorimeter system.arrow_forwardIn adiabatic process, the system has Q=max. value O W=0 O Q=0 O U-0 O * A vertical piston-cylinder device contains water and is being heated on top of a range. During the process, 65 Btu of heat is transferred to the water, and heat losses from the side walls amount to 8 Btu. The piston rises as a result of evaporation, and 5 Btu of work is done by the vapor. Determine the change in the energy of the water .for this process 61 Btu O 52 Btu 55 Btu 60 Btu * hp compressor in a facility that operates at full load-75 for 2500 h a year is powered by an electric motor that has an efficiency of 93 percent. If the unit cost of electricity is $0.11/kWh, the annual electricity cost of this :compressor is 16,540 $ 19,180 $ O 5,380 $ O 14,300 $ O barometric pressure or 1 atmospheric 1 pressure is equal to 1.019 kgf/cm2 1 kgf/cm2 0.9 kgf/cm2 0 kgf/cm2 Oarrow_forwardWhat is the ton of refrigeration required to cool 15,000 lbm of fresh pork from a temperature of 89°F to 32°F in one day? Specific heat above freezing of fresh pork is 0.68 BTU/lbm-°F.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license