Computer Systems: A Programmer's Perspective (3rd Edition)
Computer Systems: A Programmer's Perspective (3rd Edition)
3rd Edition
ISBN: 9780134092669
Author: Bryant, Randal E. Bryant, David R. O'Hallaron, David R., Randal E.; O'Hallaron, Bryant/O'hallaron
Publisher: PEARSON
Question
Book Icon
Chapter 4.4, Problem 4.28PP

A.

Program Plan Intro

Processing stages:

  • The processing of an instruction has number of operations.
  • The operations are organized into particular sequence of stages.
  • It attempts to follow a uniform sequence for all instructions.
  • The description of stages are shown below:
    • Fetch:
      • It uses program counter “PC” as memory address to read instruction bytes from memory.
      • The 4-bit portions “icode” and “ifun” of specifier byte is extracted from instruction.
      • It fetches “valC” that denotes an 8-byte constant.
      • It computes “valP” that denotes value of “PC” plus length of fetched instruction.
    • Decode:
      • The register file is been read with two operands.
      • It gives values “valA” and “valB” for operands.
      • It reads registers with instruction fields “rA” and “rB”.
    • Execute:
      • In this stage the ALU either performs required operation or increments and decrements stack pointer.
      • The resulting value is termed as “valE”.
      • The condition codes are evaluated and destination register is updated based on condition.
      • It determines whether branch should be taken or not in a jump instruction.
    • Memory:
      • The data is been written to memory or read from memory in this stage.
      •  The value that is read is determined as “valM”.
    • Write back:
      • The results are been written to register file.
      • It can write up to two results.
    • PC update:
      • The program counter “PC” denotes memory address to read bytes of instruction from memory.
      • It is used to set next instruction’s address.

B.

Program Plan Intro

Processing stages:

  • The processing of an instruction has number of operations.
  • The operations are organized into particular sequence of stages.
  • It attempts to follow a uniform sequence for all instructions.
  • The description of stages are shown below:
    • Fetch:
      • It uses program counter “PC” as memory address to read instruction bytes from memory.
      • The 4-bit portions “icode” and “ifun” of specifier byte is extracted from instruction.
      • It fetches “valC” that denotes an 8-byte constant.
      • It computes “valP” that denotes value of “PC” plus length of fetched instruction.
    • Decode:
      • The register file is been read with two operands.
      • It gives values “valA” and “valB” for operands.
      • It reads registers with instruction fields “rA” and “rB”.
    • Execute:
      • In this stage the ALU either performs required operation or increments and decrements stack pointer.
      • The resulting value is termed as “valE”.
      • The condition codes are evaluated and destination register is updated based on condition.
      • It determines whether branch should be taken or not in a jump instruction.
    • Memory:
      • The data is been written to memory or read from memory in this stage.
      •  The value that is read is determined as “valM”.
    • Write back:
      • The results are been written to register file.
      • It can write up to two results.
    • PC update:
      • The program counter “PC” denotes memory address to read bytes of instruction from memory.
      • It is used to set next instruction’s address.

C.

Program Plan Intro

Processing stages:

  • The processing of an instruction has number of operations.
  • The operations are organized into particular sequence of stages.
  • It attempts to follow a uniform sequence for all instructions.
  • The description of stages are shown below:
    • Fetch:
      • It uses program counter “PC” as memory address to read instruction bytes from memory.
      • The 4-bit portions “icode” and “ifun” of specifier byte is extracted from instruction.
      • It fetches “valC” that denotes an 8-byte constant.
      • It computes “valP” that denotes value of “PC” plus length of fetched instruction.
    • Decode:
      • The register file is been read with two operands.
      • It gives values “valA” and “valB” for operands.
      • It reads registers with instruction fields “rA” and “rB”.
    • Execute:
      • In this stage the ALU either performs required operation or increments and decrements stack pointer.
      • The resulting value is termed as “valE”.
      • The condition codes are evaluated and destination register is updated based on condition.
      • It determines whether branch should be taken or not in a jump instruction.
    • Memory:
      • The data is been written to memory or read from memory in this stage.
      •  The value that is read is determined as “valM”.
    • Write back:
      • The results are been written to register file.
      • It can write up to two results.
    • PC update:
      • The program counter “PC” denotes memory address to read bytes of instruction from memory.
      • It is used to set next instruction’s address.

D.

Program Plan Intro

Processing stages:

  • The processing of an instruction has number of operations.
  • The operations are organized into particular sequence of stages.
  • It attempts to follow a uniform sequence for all instructions.
  • The description of stages are shown below:
    • Fetch:
      • It uses program counter “PC” as memory address to read instruction bytes from memory.
      • The 4-bit portions “icode” and “ifun” of specifier byte is extracted from instruction.
      • It fetches “valC” that denotes an 8-byte constant.
      • It computes “valP” that denotes value of “PC” plus length of fetched instruction.
    • Decode:
      • The register file is been read with two operands.
      • It gives values “valA” and “valB” for operands.
      • It reads registers with instruction fields “rA” and “rB”.
    • Execute:
      • In this stage the ALU either performs required operation or increments and decrements stack pointer.
      • The resulting value is termed as “valE”.
      • The condition codes are evaluated and destination register is updated based on condition.
      • It determines whether branch should be taken or not in a jump instruction.
    • Memory:
      • The data is been written to memory or read from memory in this stage.
      •  The value that is read is determined as “valM”.
    • Write back:
      • The results are been written to register file.
      • It can write up to two results.
    • PC update:
      • The program counter “PC” denotes memory address to read bytes of instruction from memory.
      • It is used to set next instruction’s address.

Blurred answer
Students have asked these similar questions
Which tool takes the 2 provided input datasets and produces the following output dataset? Input 1: Record First Last Output: 1 Enzo Cordova Record 2 Maggie Freelund Input 2: Record Frist Last MI ? First 1 Enzo Last MI Cordova [Null] 2 Maggie Freelund [Null] 3 Jason Wayans T. 4 Ruby Landry [Null] 1 Jason Wayans T. 5 Devonn Unger [Null] 2 Ruby Landry [Null] 6 Bradley Freelund [Null] 3 Devonn Unger [Null] 4 Bradley Freelund [Null] OA. Append Fields O B. Union OC. Join OD. Find Replace Clear selection
What are the similarities and differences between massively parallel processing systems and grid computing. with references
Modular Program Structure. Analysis of Structured Programming Examples. Ways to Reduce Coupling. Based on the given problem, create an algorithm and a block diagram, and write the program code: Function: y=xsin⁡x Interval: [0,π] Requirements: Create a graph of the function. Show the coordinates (x and y). Choose your own scale and show it in the block diagram. Create a block diagram based on the algorithm. Write the program code in Python. Requirements: Each step in the block diagram must be clearly shown. The graph of the function must be drawn and saved (in PNG format). Write the code in a modular way (functions and the main part should be separate). Please explain and describe the results in detail.

Chapter 4 Solutions

Computer Systems: A Programmer's Perspective (3rd Edition)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:9780357392676
Author:FREUND, Steven
Publisher:CENGAGE L
Text book image
Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning
Text book image
Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781305971776
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning