
Computer Systems: A Programmer's Perspective (3rd Edition)
3rd Edition
ISBN: 9780134092669
Author: Bryant, Randal E. Bryant, David R. O'Hallaron, David R., Randal E.; O'Hallaron, Bryant/O'hallaron
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.46HW
A.
Program Plan Intro
Given Assembly code:
movq (%rsp), REG
addq $8, %rsp
Data movement instructions:
- The different instructions are been grouped as “instruction classes”.
- The instructions in a class performs same operation but with different sizes of operand.
- The “Mov” class denotes data movement instructions that copy data from a source location to a destination.
- The class has 4 instructions that includes:
- movb:
- It copies data from a source location to a destination.
- It denotes an instruction that operates on 1 byte data size.
- movw:
- It copies data from a source location to a destination.
- It denotes an instruction that operates on 2 bytes data size.
- movl:
- It copies data from a source location to a destination.
- It denotes an instruction that operates on 4 bytes data size.
- movq:
- It copies data from a source location to a destination.
- It denotes an instruction that operates on 8 bytes data size.
- movb:
Unary and Binary Operations:
- The details of unary operations includes:
- The single operand functions as both source as well as destination.
- It can either be a memory location or a register.
- The instruction “incq” causes 8 byte element on stack top to be incremented.
- The instruction “decq” causes 8 byte element on stack top to be decremented.
- The details of binary operations includes:
- The first operand denotes the source.
- The second operand works as both source as well as destination.
- The first operand can either be an immediate value, memory location or register.
- The second operand can either be a register or a memory location.
Jump Instruction:
- The “jump” instruction causes execution to switch to an entirely new position in program.
- The “label” indicates jump destinations in assembly code.
- The “je” instruction denotes “jump if equal” or “jump if zero”.
- The comparison operation is performed.
- If result of comparison is either equal or zero, then jump operation takes place.
- The “ja” instruction denotes “jump if above”.
- The comparison operation is performed.
- If result of comparison is greater, then jump operation takes place.
- The “pop” instruction resumes execution of jump instruction.
- The “jmpq” instruction jumps to given address. It denotes a direct jump.
B.
Program Plan Intro
Given Assembly code:
movq (%rsp), REG
addq $8, %rsp
Processing stages:
- The processing of an instruction has number of operations.
- The operations are organized into particular sequence of stages.
- It attempts to follow a uniform sequence for all instructions.
- The description of stages are shown below:
- Fetch:
- It uses program counter “PC” as memory address to read instruction bytes from memory.
- The 4-bit portions “icode” and “ifun” of specifier byte is extracted from instruction.
- It fetches “valC” that denotes an 8-byte constant.
- It computes “valP” that denotes value of “PC” plus length of fetched instruction.
- Decode:
- The register file is been read with two operands.
- It gives values “valA” and “valB” for operands.
- It reads registers with instruction fields “rA” and “rB”.
- Execute:
- In this stage the ALU either performs required operation or increments and decrements stack pointer.
- The resulting value is termed as “valE”.
- The condition codes are evaluated and destination register is updated based on condition.
- It determines whether branch should be taken or not in a jump instruction.
- Memory:
- The data is been written to memory or read from memory in this stage.
- The value that is read is determined as “valM”.
- Write back:
- The results are been written to register file.
- It can write up to two results.
- PC update:
- The program counter “PC” denotes memory address to read bytes of instruction from memory.
- It is used to set next instruction’s address.
- Fetch:
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need to render an image of a car continuously for a smooth visual experience in C# WinForms. It gets the location array (that has all the x,y of the tiles it should visit) from another function - assume it is already written.
write c program with features:
Register a Bunny: Store the bunny's name, poem, and initialize the egg count to 0.
Modify an Entry: Change the bunny's poem or update the egg count.
Delete a Bunny: Remove a registered bunny from the list.
List All Bunnies: Display all registered bunnies and their details.
Save & Load Data: Store bunny data in a file to persist between runs.
Use a struct to represent a bunny contestant.
Store data in a binary file (bunnies.dat) for persistence.
Use file I/O functions (fopen, fwrite, fread, etc.) to manage data.
Implement a menu-driven interface for user interaction.
Help, how do I write the pseudocode for the findMean function and flowchart for this?
Chapter 4 Solutions
Computer Systems: A Programmer's Perspective (3rd Edition)
Ch. 4.1 - Prob. 4.1PPCh. 4.1 - Prob. 4.2PPCh. 4.1 - Prob. 4.3PPCh. 4.1 - Prob. 4.4PPCh. 4.1 - Prob. 4.5PPCh. 4.1 - Prob. 4.6PPCh. 4.1 - Prob. 4.7PPCh. 4.1 - Prob. 4.8PPCh. 4.2 - Practice Problem 4.9 (solution page 484) Write an...Ch. 4.2 - Prob. 4.10PP
Ch. 4.2 - Prob. 4.11PPCh. 4.2 - Prob. 4.12PPCh. 4.3 - Prob. 4.13PPCh. 4.3 - Prob. 4.14PPCh. 4.3 - Prob. 4.15PPCh. 4.3 - Prob. 4.16PPCh. 4.3 - Prob. 4.17PPCh. 4.3 - Prob. 4.18PPCh. 4.3 - Prob. 4.19PPCh. 4.3 - Prob. 4.20PPCh. 4.3 - Prob. 4.21PPCh. 4.3 - Prob. 4.22PPCh. 4.3 - Prob. 4.23PPCh. 4.3 - Prob. 4.24PPCh. 4.3 - Prob. 4.25PPCh. 4.3 - Prob. 4.26PPCh. 4.3 - Prob. 4.27PPCh. 4.4 - Prob. 4.28PPCh. 4.4 - Prob. 4.29PPCh. 4.5 - Prob. 4.30PPCh. 4.5 - Prob. 4.31PPCh. 4.5 - Prob. 4.32PPCh. 4.5 - Prob. 4.33PPCh. 4.5 - Prob. 4.34PPCh. 4.5 - Prob. 4.35PPCh. 4.5 - Prob. 4.36PPCh. 4.5 - Prob. 4.37PPCh. 4.5 - Prob. 4.38PPCh. 4.5 - Prob. 4.39PPCh. 4.5 - Prob. 4.40PPCh. 4.5 - Prob. 4.41PPCh. 4.5 - Prob. 4.42PPCh. 4.5 - Prob. 4.43PPCh. 4.5 - Prob. 4.44PPCh. 4 - Prob. 4.45HWCh. 4 - Prob. 4.46HWCh. 4 - Prob. 4.47HWCh. 4 - Prob. 4.48HWCh. 4 - Modify the code you wrote for Problem 4.47 to...Ch. 4 - In Section 3.6.8, we saw that a common way to...Ch. 4 - Prob. 4.51HWCh. 4 - The file seq-full.hcl contains the HCL description...Ch. 4 - Prob. 4.53HWCh. 4 - The file pie=full. hcl contains a copy of the PIPE...Ch. 4 - Prob. 4.55HWCh. 4 - Prob. 4.56HWCh. 4 - Prob. 4.57HWCh. 4 - Our pipelined design is a bit unrealistic in that...Ch. 4 - Prob. 4.59HW
Knowledge Booster
Similar questions
- Need help drawing a flowchart for the findMax function herearrow_forwardNeed help writing the pseudocode for the findMin function with attachedarrow_forwardCreate a static function in C# where poachers appear and attempt to hunt animals. It gets the location of the closest animal to itself. Take account of that the animal also move too, so it should update the closest location (x, y) everytime it moves to a new location. Use winforms to show the movements of poachers.arrow_forward
- Create a static function in C# where poachers appear and attempt to hunt animals. It gets the location of the closest animal to itself. Take account of that the animal also moves too, so it should update the closest location (x, y) everytime it moves to a new location. Use winforms to show to movementsarrow_forwardI have to develop an efficient parallel numerical integration program on a 2-D mesh but I'm struggling. And it has to be in Cstararrow_forwardAn employee is departing from the company you work for. Explain why it could be best practice not to delete their user account but to lock it instead.arrow_forward
- the nagle algorithm, built into most tcp implementations, requires the sender to hold a partial segment's worth of data (even if pushed) until either a full segment accumulates or the most recent outstanding ack arrives. (a) suppose the letters abcdefghi are sent, one per second, over a tcp connection with an rtt of 4.1 seconds. draw a timeline indicating when each packet is sent and what it contains.arrow_forwardJust need some assistance with number 3 please, in C#arrow_forwardHow do we find the possible final values of variable x in the following program. Int x=0; sem s1=1, s2 =0; CO P(s2); P(s1); x=x*2; V(s1); // P(s1); x=x*x; V(s1); // P(s1); x=x+3; V(s2); V(s1); Ocarrow_forward
- Lab 07: Java Graphics (Bonus lab) In this lab, we'll be practicing what we learned about GUIs, and Mouse events. You will need to implement the following: ➤ A GUI with a drawing panel. We can click in this panel, and you will capture those clicks as a Point (see java.awt.Point) in a PointCollection class (you need to build this). о The points need to be represented by circles. Below the drawing panel, you will need 5 buttons: о An input button to register your mouse to the drawing panel. ○ о о A show button to paint the points in your collection on the drawing panel. A button to shift all the points to the left by 50 pixels. The x position of the points is not allowed to go below zero. Another button to shift all the points to the right 50 pixels. The x position of the points cannot go further than the You can implement this GUI in any way you choose. I suggest using the BorderLayout for a panel containing the buttons, and a GridLayout to hold the drawing panel and button panels.…arrow_forwardIf a UDP datagram is sent from host A, port P to host B, port Q, but at host B there is no process listening to port Q, then B is to send back an ICMP Port Unreachable message to A. Like all ICMP messages, this is addressed to A as a whole, not to port P on A. (a) Give an example of when an application might want to receive such ICMP messages. (b) Find out what an application has to do, on the operating system of your choice, to receive such messages. (c) Why might it not be a good idea to send such messages directly back to the originating port P on A?arrow_forwardDiscuss how business intelligence and data visualization work together to help decision-makers and data users. Provide 2 specific use cases.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Systems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage LearningC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology Ptr
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,Principles of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr

EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT

Microsoft Visual C#
Computer Science
ISBN:9781337102100
Author:Joyce, Farrell.
Publisher:Cengage Learning,

Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning