EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 55P
In a dielectric medium with ϵr = 4, the electric field is given by
Calculate the electrostatic energy stored in the region −1 m ≤ x ≤ 1 m, 0 ≤ y ≤ 2 m, and 0 ≤ z ≤ 3 m.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Boundary Conditions
Two planar slabs of equal thickness but with different dielectric constants are shown inFigure. Eo in air makes an angle of 30° with the z-axis.
Calculate the angle that E makes with the z-axis in each of the two dielectric layers.
The non-uniform linear charge density is given. Which electric field that the arc with radius r=R/9 will create in that region includes x component?
Three uniform line charges with 75 n
c/m located at x=1, z=2 and y=-2, z=5
and x=-3y=-1 respectively. Find E at the
origin?
Engineering
Electrical Engineering
Electromagnetic Theory
Chapter 4 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 4.2 - What happens to Maxwells equations under static...Ch. 4.2 - How is the current density J related to the volume...Ch. 4.2 - Prob. 3CQCh. 4.2 - A square plate residing in the xy plane is...Ch. 4.2 - A thick spherical shell centered at the origin...Ch. 4.3 - When characterizing the electrical permittivity of...Ch. 4.3 - If the electric field is zero at a given point in...Ch. 4.3 - State the principle of linear superposition as it...Ch. 4.3 - Four charges of 10 C each are located in free...Ch. 4.3 - Two identical charges are located on the x axis at...
Ch. 4.3 - In a hydrogen atom the electron and proton are...Ch. 4.3 - An infinite sheet with uniform surface charge...Ch. 4.4 - Explain Gausss law. Under what circumstances is it...Ch. 4.4 - How should one choose a Gaussian surface?Ch. 4.4 - Two infinite lines, each carrying a uniform charge...Ch. 4.4 - A thin spherical shell of radius a carries a...Ch. 4.4 - A spherical volume of radius a contains a uniform...Ch. 4.5 - What is a conservative field?Ch. 4.5 - Why is the electric potential at a point in space...Ch. 4.5 - Prob. 11CQCh. 4.5 - Why is it usually easier to compute V for a given...Ch. 4.5 - Prob. 13CQCh. 4.5 - Determine the electric potential at the origin due...Ch. 4.5 - A spherical shell of radius a has a uniform...Ch. 4.6 - What are the electromagnetic constitutive...Ch. 4.6 - Prob. 15CQCh. 4.6 - What is the conductivity of a perfect dielectric?Ch. 4.6 - Prob. 17CQCh. 4.6 - Prob. 18CQCh. 4.6 - Determine the density of free electrons in...Ch. 4.6 - Prob. 13ECh. 4.6 - A 50 m long copper wire has a circular cross...Ch. 4.6 - Prob. 15ECh. 4.7 - What is a polar material? A nonpolar material?Ch. 4.7 - Prob. 20CQCh. 4.7 - What happens when dielectric breakdown occurs?Ch. 4.7 - Find E1 in Fig. 4-19 if E2=x2y3+z3(v/m),1=20,2=80,...Ch. 4.7 - Repeat Exercise 4.16 for a boundary with surface...Ch. 4.8 - What are the boundary conditions for the electric...Ch. 4.8 - Prob. 23CQCh. 4.9 - How is the capacitance of a two-conductor...Ch. 4.9 - What are fringing fields and when may they be...Ch. 4.10 - To bring a charge q from infinity to a given point...Ch. 4.10 - Prob. 27CQCh. 4.10 - The radii of the inner and outer conductors of a...Ch. 4.11 - What is the fundamental premise of the image...Ch. 4.11 - Given a charge distribution, what are the various...Ch. 4.11 - Use the result of Example 4-13 to find the surface...Ch. 4 - A cube 2 m on a side is located in the first...Ch. 4 - Prob. 2PCh. 4 - Find the total charge contained in a round-top...Ch. 4 - If the line charge density is given by l = 24y2...Ch. 4 - Find the total charge on a circular disk defined...Ch. 4 - If J = 4xz (A/m2), find the current I flowing...Ch. 4 - Prob. 7PCh. 4 - An electron beam shaped like a circular cylinder...Ch. 4 - Prob. 9PCh. 4 - A line of charge of uniform density occupies a...Ch. 4 - A square with sides of 2 m has a charge of 40 C at...Ch. 4 - Three point charges, each with q = 3 nC, are...Ch. 4 - Charge q1 = 6 C is located at (1 cm, 1 cm, 0) and...Ch. 4 - A line of charge with uniform density = 8 (C/m)...Ch. 4 - Prob. 15PCh. 4 - A line of charge with uniform density l extends...Ch. 4 - Repeat Example 4-5 for liie circular disk of...Ch. 4 - Multiple charges at different locations are said...Ch. 4 - Three infinite lines of charge, all parallel to...Ch. 4 - Prob. 20PCh. 4 - A horizontal strip lying in the xy plane is of...Ch. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Charge Q1 is uniformly distributed over a thin...Ch. 4 - The electric flux density inside a dielectric...Ch. 4 - Prob. 26PCh. 4 - An infinitely long cylindrical shell extending...Ch. 4 - If the charge density increases linearly with...Ch. 4 - A spherical shell with outer radius b surrounds a...Ch. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A circular ring of charge of radius a lies in the...Ch. 4 - Prob. 33PCh. 4 - Find the electric potential V at a location a...Ch. 4 - For the electric dipole shown in Fig. 4-13, d = 1...Ch. 4 - For each of the distributions of the electric...Ch. 4 - Two infinite lines of charge, both parallel to the...Ch. 4 - Given the electric field E=R18R2(V/m) find the...Ch. 4 - An infinitely long line of charge with uniform...Ch. 4 - The xy plane contains a uniform sheet of charge...Ch. 4 - A cylindrical bar of silicon has a radius of 4 mm...Ch. 4 - Repeat Problem 4.41 for a bar of germanium with e...Ch. 4 - A 100 m long conductor of uniform cross-section...Ch. 4 - Prob. 44PCh. 4 - Apply the result of Problem 4.44 to find the...Ch. 4 - A 2 103 mm thick square sheet of aluminum has 5 cm...Ch. 4 - A cylinder-shaped carbon resistor is 8 cm in...Ch. 4 - With reference to Fig. 4-19, find E1 if...Ch. 4 - An infinitely long cylinder of radius a is...Ch. 4 - If E=R150(V/m) at the surface of a 5-cm conducting...Ch. 4 - Figure P4.51 shows three planar dielectric slabs...Ch. 4 - Determine the force of attraction in a...Ch. 4 - Dielectric breakdown occurs in a material whenever...Ch. 4 - An electron with charge Qe = 1.61019 C and mass me...Ch. 4 - In a dielectric medium with r = 4, the electric...Ch. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Conducting wires above a conducting plane carry...Ch. 4 - Prob. 63P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- When a dielectric plate is inserted into a uniform electric field, the electric field in the dielectric is larger than outside of the dielectric. Select one: True Falsearrow_forwardWhat is the electric field intensity ( u V/m) at a point (6, 10, - 5) caused by a uniform surface charge density of 20 µC/m at a plane y = 8? 20/80 ay -20/80 ay -10/s0 ay 10/80 ay A Moving to another question will save this response. Windows bu Windows Scl J E 4) Earrow_forwardThe diagram below represents equipotential lines in a region where an electric field is present. Points P through x are identified. 20 V 10 V ov W -10 U -20 V S The potential at point Q is 25 V; the straight-line distance from point Q to point X is 0.20 meter. What is the average strength of the electric field in the region between points Q and X? O 75 N/C O 125 N/C 50 N/C O 87.5 N/Carrow_forward
- Find the field. What is the magnitude of the electric field at a distance 0.145 m away from the surface of a solid insulating sphere with radius 0.355 m and charge density 2.60 x 10-7 :? m3 A. 1419 N/C C. 3475 N/C В. 1752 N/C D. 5256 N/Carrow_forwardProblem1 a. What is the capacitance of two square parallel plates 15.0 cm x 13.0 cm on sides that are separated by 0.18 mm in air gap. b. Find the dielectric constant K of the paper between two parallel plates with a capacitance C = 4.87 nF.arrow_forwardA single infinite conducting cylinder of radius "a" is carrying an axial current "T along the z - axis (the cylinder's axis). The current is distributed uniformly across the cross section of the cylinder. Find the H Field for r > a. Ir ar 2ra? O None of the above O 2T72I a IrHo ap 2πα? -Ir ap 2πα Ir 2Ta2arrow_forward
- Three identical point charges (+33 µC) are placed at the corners of an equilateral triangle that has (20 cm sides. How much work (in units of J) is required to assemble this charge arrangement starting with each of the charges a very large distance from any of the other charges? Select one: OA. 87.1 OB. 147.0 OD. 108.9 Next pagearrow_forwardA point charge of 12 nC is located at the origin. four uniform line charges are located in the x = 0 plane as follows: 80 nC/m at y = -1 and -5 m, -50 nC/m at y = -2 and -4 m. Find D at P(0,-3, 2), D = Blank 1ax + Blank 2ay + Blank 3az pC/m^2. Use one decimal place. Blank 1 Add your answer Blank 2 Add your answer Blank 3 Add your answerarrow_forwardELECTROMAGNETIC QUESTION A flat linear dielectric surface whose relative permittivity is 4 is subject to an electric field an electric flux density of 6 C/m2 and the dielectric is uniformly polarized. The electric field is perpendicular to the slab. The volume of the dielectric is 5 m3. What is the value of polarization?arrow_forward
- 9. Calculate the capacitance between two parallel plates each of which is 100 cm? and 2 mm apart in air. a. 0.443 uµF b. 0.515 μμ c . 0.452 μμ F d. 0.502 μμF 10. Calculate the magnitude of the electric field at a point that is 30 cm from a point charge Q = -3.2 x 10-6 C. a. 3.2 x 10-6 N/C b. 3.0 x 105 N/C c. 2.8 x 10°N/C d. 2.4 x 105 N/Carrow_forwardIf the field exists in a region consisting of two different media, the conditions that the field must satisfy at the interface separating the media are called boundary conditions Image Theory Ampere's Law Stokes's Theoremarrow_forwardFor the field H = 4x2y ay A/m ,determine the magnitude (absolute value) of the current flowing the rectangular path around the region: x = 1.6 to 7.6, y = 1.3 to 6.8, z = 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Demos: Dielectric breakdown; Author: Caltech's Feynman Lecture Hall;https://www.youtube.com/watch?v=2YrHh1ikefI;License: Standard Youtube License