EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 61P
(a)
To determine
The magnitude, polarity and location of the images of the charge
(b)
To determine
The electric potential and electric field at the an arbitrary point
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A solid conducting sphere of radius R
carries a charge +Q.
A thick conducting shell is concentric with the sphere
and has an inner radius R2 and outer radius R3.
The shell carries a charge -Q.
The figure shows a cross section.
a) Where are the charges located? Add charge symbols to
the figure.
R1
R3
R2
b) Add a few electric field lines and equipotential lines to the figure. Please label the lines
clearly.
c) Draw a sketch of the potential as a function of distance from the center of the sphere. Please
label all interesting points on the graph.
Can you do problem 4.51 and if possible can u include a diagram
Problem 4.
= 5 [nc] is on the x-axis at x₁ = -1 [m] and a
second positive point charge q₂ = 5 [nc] is on the
x-axis at x₂ = 3 [m].
a.
Point A.
d1 =
b.
|Ē₁A| =
Point A is on the x-axis at XÃ = 7 [m].
Ẻ₁A
d.
Point A.
d2 =
e.
=
E2Al
2A
C.
by the charge q₁ at Point A.
i +
[N/C]
Find the distance between 92 and
0
=
=
O+x
O-x
O+y
O-y
A positive point charge q₁
2
92
Find the distance between q₁ and
m
Find the magnitude of E₁A
[N/C]
m
f.
by the charge q₂2 at Point A.
Calculate ₁4 the electric field created
1A
[N/C]
g.
Consider a point located 6 m from the
origin, what will be the direction of the net electric
field created by the charges at this point?
2 +
x, m
Find the magnitude of È 2A.
[N/C]
Calculate E24 the electric field created
2A
Chapter 4 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 4.2 - What happens to Maxwells equations under static...Ch. 4.2 - How is the current density J related to the volume...Ch. 4.2 - Prob. 3CQCh. 4.2 - A square plate residing in the xy plane is...Ch. 4.2 - A thick spherical shell centered at the origin...Ch. 4.3 - When characterizing the electrical permittivity of...Ch. 4.3 - If the electric field is zero at a given point in...Ch. 4.3 - State the principle of linear superposition as it...Ch. 4.3 - Four charges of 10 C each are located in free...Ch. 4.3 - Two identical charges are located on the x axis at...
Ch. 4.3 - In a hydrogen atom the electron and proton are...Ch. 4.3 - An infinite sheet with uniform surface charge...Ch. 4.4 - Explain Gausss law. Under what circumstances is it...Ch. 4.4 - How should one choose a Gaussian surface?Ch. 4.4 - Two infinite lines, each carrying a uniform charge...Ch. 4.4 - A thin spherical shell of radius a carries a...Ch. 4.4 - A spherical volume of radius a contains a uniform...Ch. 4.5 - What is a conservative field?Ch. 4.5 - Why is the electric potential at a point in space...Ch. 4.5 - Prob. 11CQCh. 4.5 - Why is it usually easier to compute V for a given...Ch. 4.5 - Prob. 13CQCh. 4.5 - Determine the electric potential at the origin due...Ch. 4.5 - A spherical shell of radius a has a uniform...Ch. 4.6 - What are the electromagnetic constitutive...Ch. 4.6 - Prob. 15CQCh. 4.6 - What is the conductivity of a perfect dielectric?Ch. 4.6 - Prob. 17CQCh. 4.6 - Prob. 18CQCh. 4.6 - Determine the density of free electrons in...Ch. 4.6 - Prob. 13ECh. 4.6 - A 50 m long copper wire has a circular cross...Ch. 4.6 - Prob. 15ECh. 4.7 - What is a polar material? A nonpolar material?Ch. 4.7 - Prob. 20CQCh. 4.7 - What happens when dielectric breakdown occurs?Ch. 4.7 - Find E1 in Fig. 4-19 if E2=x2y3+z3(v/m),1=20,2=80,...Ch. 4.7 - Repeat Exercise 4.16 for a boundary with surface...Ch. 4.8 - What are the boundary conditions for the electric...Ch. 4.8 - Prob. 23CQCh. 4.9 - How is the capacitance of a two-conductor...Ch. 4.9 - What are fringing fields and when may they be...Ch. 4.10 - To bring a charge q from infinity to a given point...Ch. 4.10 - Prob. 27CQCh. 4.10 - The radii of the inner and outer conductors of a...Ch. 4.11 - What is the fundamental premise of the image...Ch. 4.11 - Given a charge distribution, what are the various...Ch. 4.11 - Use the result of Example 4-13 to find the surface...Ch. 4 - A cube 2 m on a side is located in the first...Ch. 4 - Prob. 2PCh. 4 - Find the total charge contained in a round-top...Ch. 4 - If the line charge density is given by l = 24y2...Ch. 4 - Find the total charge on a circular disk defined...Ch. 4 - If J = 4xz (A/m2), find the current I flowing...Ch. 4 - Prob. 7PCh. 4 - An electron beam shaped like a circular cylinder...Ch. 4 - Prob. 9PCh. 4 - A line of charge of uniform density occupies a...Ch. 4 - A square with sides of 2 m has a charge of 40 C at...Ch. 4 - Three point charges, each with q = 3 nC, are...Ch. 4 - Charge q1 = 6 C is located at (1 cm, 1 cm, 0) and...Ch. 4 - A line of charge with uniform density = 8 (C/m)...Ch. 4 - Prob. 15PCh. 4 - A line of charge with uniform density l extends...Ch. 4 - Repeat Example 4-5 for liie circular disk of...Ch. 4 - Multiple charges at different locations are said...Ch. 4 - Three infinite lines of charge, all parallel to...Ch. 4 - Prob. 20PCh. 4 - A horizontal strip lying in the xy plane is of...Ch. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Charge Q1 is uniformly distributed over a thin...Ch. 4 - The electric flux density inside a dielectric...Ch. 4 - Prob. 26PCh. 4 - An infinitely long cylindrical shell extending...Ch. 4 - If the charge density increases linearly with...Ch. 4 - A spherical shell with outer radius b surrounds a...Ch. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A circular ring of charge of radius a lies in the...Ch. 4 - Prob. 33PCh. 4 - Find the electric potential V at a location a...Ch. 4 - For the electric dipole shown in Fig. 4-13, d = 1...Ch. 4 - For each of the distributions of the electric...Ch. 4 - Two infinite lines of charge, both parallel to the...Ch. 4 - Given the electric field E=R18R2(V/m) find the...Ch. 4 - An infinitely long line of charge with uniform...Ch. 4 - The xy plane contains a uniform sheet of charge...Ch. 4 - A cylindrical bar of silicon has a radius of 4 mm...Ch. 4 - Repeat Problem 4.41 for a bar of germanium with e...Ch. 4 - A 100 m long conductor of uniform cross-section...Ch. 4 - Prob. 44PCh. 4 - Apply the result of Problem 4.44 to find the...Ch. 4 - A 2 103 mm thick square sheet of aluminum has 5 cm...Ch. 4 - A cylinder-shaped carbon resistor is 8 cm in...Ch. 4 - With reference to Fig. 4-19, find E1 if...Ch. 4 - An infinitely long cylinder of radius a is...Ch. 4 - If E=R150(V/m) at the surface of a 5-cm conducting...Ch. 4 - Figure P4.51 shows three planar dielectric slabs...Ch. 4 - Determine the force of attraction in a...Ch. 4 - Dielectric breakdown occurs in a material whenever...Ch. 4 - An electron with charge Qe = 1.61019 C and mass me...Ch. 4 - In a dielectric medium with r = 4, the electric...Ch. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Conducting wires above a conducting plane carry...Ch. 4 - Prob. 63P
Knowledge Booster
Similar questions
- Prob 4.5 A charge distribution is given by p, = 6x2y² nC/m³. Determine the total charge enclosed by a cube of side 2 m centered at the origin and whose edges are parallel to the axes.arrow_forwardA sphere has radius of R. The sphere also has a uniform charge of 4Q. There is a point charge of -Q at sphere's center. Derive an equation for E at points where the radius is less then R.arrow_forward(al:Determine E caused by the spherical cloud of electrons with a volume charge density of - 1.68 x 10 -18 for 0 10mm. Clearly mention the surfaces, there differential components and write the equation properly by doing all the steps. (b): For the dielectric composition shown in the figure find out its total capacitance.arrow_forward
- As6arrow_forwardH.W)-AStlerical charge of (sv= 6elm3) and ra dins ( Hs cen tor is at ( 3). find →(E) at Point (3,-2w 25arrow_forwardINC 6- Two identical ring of radii 1 cm are separated by a distance much greater than their radii as shown in Figure. The rings carry charges of -1 μC and +1 µc uniformly distributed over them. If a point charge of 1 µC moves from the center of the ring on the right to the center of the ring on the left, how much potential energy changes in the point charge-rings system? Note: the potential of a uniformly charged ring of radius a and total charge Q at a point on its perpendicular axis is given by V=k, va'+xarrow_forward
- Using the method of integration, what is the electric field of a uniformly charged thin circular plate (with radius R and total charge Q) at x0 distance from its center? (Consider that the surface of the plate lies in the yz plane) Use the template in the attached pictures to solve the problem.arrow_forwardGauss law can be used if the structure carrying the charge is asymmetric around the point. Select one: True False ionarrow_forwardTwo charges qa=5uc and qb=8.5 uc are separated by a distance of 15 cm. point p is located along the line segment joining two charges. how far is point p from qa if the magnitude of the electric field at poin p due to the two charges is equal to zero? Draw a sketch of the problem and label appropriatelyarrow_forward
- Two conducting cylinders at p = 2 cm and p = 8 cm in free space are held at potentials of 60 mV and -30 mV, electric field at p= 5cm -1.0833ap -1.3ap -1.625a, -2.166aparrow_forwardTwo 1.20 m non-conductive wires form a right angle. A segment has +2.50 µC of charge, distributed evenly along its length; while the other segment has -2.50 µC of charge, distributed uniformly along its length, as illustrated in the figure. Find the magnitude and direction of the electric field produced by these wires at point P, which is 60.0 cm from each wire.arrow_forward5. In a Cartesian plane, 4 charges are placed as follows: a 5C charge is placed at (0, 3), -4C charge is placed at (5, -2), 1.5C charge is placed at (0, 0) and a -6C charge is placed at (-4, -4). Determine the force felt by the charge at the origin due to the presence of the other charges.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,