EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 31P
(a)
To determine
The electric potential at the point
(b)
To determine
The electric field
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A volume charge density is known to be Delta(n, deg, z) in cylindrical coordinates. What is the appropriate expression to evaluate the total charge (for an arbitrary geometry)
and explain your answer please
(al:Determine E caused by the spherical cloud of electrons with a volume charge density of -
1.68 x 10 -18 for 0 10mm. Clearly
mention the surfaces, there differential components and write the equation properly by
doing all the steps.
(b): For the dielectric composition shown in the figure find out its total capacitance.
Chapter 4 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 4.2 - What happens to Maxwells equations under static...Ch. 4.2 - How is the current density J related to the volume...Ch. 4.2 - Prob. 3CQCh. 4.2 - A square plate residing in the xy plane is...Ch. 4.2 - A thick spherical shell centered at the origin...Ch. 4.3 - When characterizing the electrical permittivity of...Ch. 4.3 - If the electric field is zero at a given point in...Ch. 4.3 - State the principle of linear superposition as it...Ch. 4.3 - Four charges of 10 C each are located in free...Ch. 4.3 - Two identical charges are located on the x axis at...
Ch. 4.3 - In a hydrogen atom the electron and proton are...Ch. 4.3 - An infinite sheet with uniform surface charge...Ch. 4.4 - Explain Gausss law. Under what circumstances is it...Ch. 4.4 - How should one choose a Gaussian surface?Ch. 4.4 - Two infinite lines, each carrying a uniform charge...Ch. 4.4 - A thin spherical shell of radius a carries a...Ch. 4.4 - A spherical volume of radius a contains a uniform...Ch. 4.5 - What is a conservative field?Ch. 4.5 - Why is the electric potential at a point in space...Ch. 4.5 - Prob. 11CQCh. 4.5 - Why is it usually easier to compute V for a given...Ch. 4.5 - Prob. 13CQCh. 4.5 - Determine the electric potential at the origin due...Ch. 4.5 - A spherical shell of radius a has a uniform...Ch. 4.6 - What are the electromagnetic constitutive...Ch. 4.6 - Prob. 15CQCh. 4.6 - What is the conductivity of a perfect dielectric?Ch. 4.6 - Prob. 17CQCh. 4.6 - Prob. 18CQCh. 4.6 - Determine the density of free electrons in...Ch. 4.6 - Prob. 13ECh. 4.6 - A 50 m long copper wire has a circular cross...Ch. 4.6 - Prob. 15ECh. 4.7 - What is a polar material? A nonpolar material?Ch. 4.7 - Prob. 20CQCh. 4.7 - What happens when dielectric breakdown occurs?Ch. 4.7 - Find E1 in Fig. 4-19 if E2=x2y3+z3(v/m),1=20,2=80,...Ch. 4.7 - Repeat Exercise 4.16 for a boundary with surface...Ch. 4.8 - What are the boundary conditions for the electric...Ch. 4.8 - Prob. 23CQCh. 4.9 - How is the capacitance of a two-conductor...Ch. 4.9 - What are fringing fields and when may they be...Ch. 4.10 - To bring a charge q from infinity to a given point...Ch. 4.10 - Prob. 27CQCh. 4.10 - The radii of the inner and outer conductors of a...Ch. 4.11 - What is the fundamental premise of the image...Ch. 4.11 - Given a charge distribution, what are the various...Ch. 4.11 - Use the result of Example 4-13 to find the surface...Ch. 4 - A cube 2 m on a side is located in the first...Ch. 4 - Prob. 2PCh. 4 - Find the total charge contained in a round-top...Ch. 4 - If the line charge density is given by l = 24y2...Ch. 4 - Find the total charge on a circular disk defined...Ch. 4 - If J = 4xz (A/m2), find the current I flowing...Ch. 4 - Prob. 7PCh. 4 - An electron beam shaped like a circular cylinder...Ch. 4 - Prob. 9PCh. 4 - A line of charge of uniform density occupies a...Ch. 4 - A square with sides of 2 m has a charge of 40 C at...Ch. 4 - Three point charges, each with q = 3 nC, are...Ch. 4 - Charge q1 = 6 C is located at (1 cm, 1 cm, 0) and...Ch. 4 - A line of charge with uniform density = 8 (C/m)...Ch. 4 - Prob. 15PCh. 4 - A line of charge with uniform density l extends...Ch. 4 - Repeat Example 4-5 for liie circular disk of...Ch. 4 - Multiple charges at different locations are said...Ch. 4 - Three infinite lines of charge, all parallel to...Ch. 4 - Prob. 20PCh. 4 - A horizontal strip lying in the xy plane is of...Ch. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Charge Q1 is uniformly distributed over a thin...Ch. 4 - The electric flux density inside a dielectric...Ch. 4 - Prob. 26PCh. 4 - An infinitely long cylindrical shell extending...Ch. 4 - If the charge density increases linearly with...Ch. 4 - A spherical shell with outer radius b surrounds a...Ch. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A circular ring of charge of radius a lies in the...Ch. 4 - Prob. 33PCh. 4 - Find the electric potential V at a location a...Ch. 4 - For the electric dipole shown in Fig. 4-13, d = 1...Ch. 4 - For each of the distributions of the electric...Ch. 4 - Two infinite lines of charge, both parallel to the...Ch. 4 - Given the electric field E=R18R2(V/m) find the...Ch. 4 - An infinitely long line of charge with uniform...Ch. 4 - The xy plane contains a uniform sheet of charge...Ch. 4 - A cylindrical bar of silicon has a radius of 4 mm...Ch. 4 - Repeat Problem 4.41 for a bar of germanium with e...Ch. 4 - A 100 m long conductor of uniform cross-section...Ch. 4 - Prob. 44PCh. 4 - Apply the result of Problem 4.44 to find the...Ch. 4 - A 2 103 mm thick square sheet of aluminum has 5 cm...Ch. 4 - A cylinder-shaped carbon resistor is 8 cm in...Ch. 4 - With reference to Fig. 4-19, find E1 if...Ch. 4 - An infinitely long cylinder of radius a is...Ch. 4 - If E=R150(V/m) at the surface of a 5-cm conducting...Ch. 4 - Figure P4.51 shows three planar dielectric slabs...Ch. 4 - Determine the force of attraction in a...Ch. 4 - Dielectric breakdown occurs in a material whenever...Ch. 4 - An electron with charge Qe = 1.61019 C and mass me...Ch. 4 - In a dielectric medium with r = 4, the electric...Ch. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Conducting wires above a conducting plane carry...Ch. 4 - Prob. 63P
Knowledge Booster
Similar questions
- can you solve my question ?arrow_forward1. A thin rod of length W has uniform charge per length A. Find the electric potential (voltage) at the position P as shown. Assume V = 0 at r = o for problems on this worksheet. Use the integration variable u as defined in the diagram to write the voltage at point P. Include the limits of integration but you do not need to evaluate the integral. P Hint: break up the rod into small pieces of length du and use the point charge formula for the voltage due to the small piece dV = Kdq/r with dą and r written in terms of the givens à, L, z and integration variable u and du. W 3 du 0.arrow_forwardThe following charges distributions are present in free space as shown in Figure, point charge 6 nC at P(2.0,6). a uniform infinite line charge density 1.5 nCm at x-2, y- 3, and infinite surface charge density 0.1 nCm atx2. the electric field at origin due to the point charge only is le charge 4.427a-1281a 475 ax ONone of Thesearrow_forward
- Two thin uniformly charged rods, each with length L and total charge +Q, are parallel and separated by a distance a. The first rod has one end at the origin and its other end on the positive y-axis. The second rod has its lower end on the positive a-axis. Part A Determine the x-component of the differential force dF, exerted on a small portion of the second rod, with length dy, and position y2, by the first rod. (This requires integrating over differential portions of the first rod, parameterized by dy1.) Express your answer in terms of some or all of variables Q, L, Y2, dy2, a, and the electric constant ep. να ΑΣΦ7 dF22 =arrow_forwardA rod of length L=0.65m is placed along the x-axis from x=0 to x=L. The rod carries a uniform linear charge density of 1.92 x 10^-11 C/m. A. Find an expression for the infintesimal charge along the rod in terms of the variables, L, lambda, x and y, and/or the differential positions dx and dy. B. What is the value of the potential at the point (xo,yo) in volts for xo= 1.35m and yo=1.45m?arrow_forwardProblem Description Two small metal spheres A and B have different electric potentials. Sphere A has charge qA = -6x10-6 C and sphere B has charge qB = +2x10-6 C. The radius of sphere A is 0.25 m and the radius of sphere B is 0.50 m. The two spheres are then connected with a wire. Instructions In a neat and organized fashion, write out a solution which includes the following: A sketch of the physical situation with all given physical quantities clearly labeled. If the description above consists of an initial and final state, both of these states should be represented in your sketch. Draw charge diagrams of the spheres before and after they are connected. Charges may be drawn directly on your sketches. Describe in words and mathematically what happens if you connect the spheres with a wire. Calculate the final charge on each sphere after they are connected. What assumptions did you make? Evaluate your answer to determine whether it is reasonable or not. Consider all aspects of your…arrow_forward
- Could you please explain it?arrow_forwardAt what distance from the origin (cm) is the greatest force applied to the negative charge? To find this, write the force F acting on the negative charge of place x as a function. Then find the function F(x) extreme values. The charge exerted to the negative force was 18.5N. By virtue of symmetry, the resultant force acting on the negative charge cannot have y component.arrow_forwardGiven the potential field, V 2xy-5z, and a point P(-4,3,6), find V, E, direction of E, D, and parrow_forward
- Two thin uniformly charged rods, each with length L and total charge +Q, are parallel and separated by a distance a. The first rod has one end at the origin and its other end on the positive y-axis. The second rod has its lower end on the positive a-axis. Part A Determine the x-component of the differential force dF, exerted on a small portion of rod. (This requires integrating over differential portions second rod, with length dyz and position y2, by the first the first rod, parameterized by dyı.) Express your answer in terms of some or all of variables Q, L, y2, dy2, a, and the electric constant eg. Hνα ΑΣφ dF2z =arrow_forwardWhat is the correct answer?arrow_forwardA sphere has radius of R. The sphere also has a uniform charge of 4Q. There is a point charge of -Q at sphere's center. Derive an equation for E at points where the radius is less then R.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,