EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 36P
For each of the distributions of the electric potential V shown in Fig. P4.36, sketch the corresponding distribution of E (in all cases, the vertical axis is in volts and the horizontal axis is in meters).
Figure P4.36 Electric potential distributions of Problem 4.36.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Q4. The equation relating the current in a circuit with time is i=282.1 sin377t, where the current is measured in amperes and the time in seconds. Find the values of:
The r.m.s current
The frequency
The instantenous value of the current when t=2.0ms
and 8 = 90".
4.36 For cach of the distributions of the electric potential V
shown in Fig, P4.36, sketch the corresponding distribution of
E (in all cases, the vertical axis is in volts and the horizontal
axis is in meters).
(a)
30
11 13
16
-30
(b)
%24
(c)
ir
y
en
in
is
Figure P4.36 Electric potential distributions of Problem 4.36.
When dealing with a point charge what is the most logical place to set
V=0?
At the charge's outside surfae.
O The zero point is arbitrary so it doesn't matter.
O At the charge's location.
At r-1 m.
At infinity.
Chapter 4 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 4.2 - What happens to Maxwells equations under static...Ch. 4.2 - How is the current density J related to the volume...Ch. 4.2 - Prob. 3CQCh. 4.2 - A square plate residing in the xy plane is...Ch. 4.2 - A thick spherical shell centered at the origin...Ch. 4.3 - When characterizing the electrical permittivity of...Ch. 4.3 - If the electric field is zero at a given point in...Ch. 4.3 - State the principle of linear superposition as it...Ch. 4.3 - Four charges of 10 C each are located in free...Ch. 4.3 - Two identical charges are located on the x axis at...
Ch. 4.3 - In a hydrogen atom the electron and proton are...Ch. 4.3 - An infinite sheet with uniform surface charge...Ch. 4.4 - Explain Gausss law. Under what circumstances is it...Ch. 4.4 - How should one choose a Gaussian surface?Ch. 4.4 - Two infinite lines, each carrying a uniform charge...Ch. 4.4 - A thin spherical shell of radius a carries a...Ch. 4.4 - A spherical volume of radius a contains a uniform...Ch. 4.5 - What is a conservative field?Ch. 4.5 - Why is the electric potential at a point in space...Ch. 4.5 - Prob. 11CQCh. 4.5 - Why is it usually easier to compute V for a given...Ch. 4.5 - Prob. 13CQCh. 4.5 - Determine the electric potential at the origin due...Ch. 4.5 - A spherical shell of radius a has a uniform...Ch. 4.6 - What are the electromagnetic constitutive...Ch. 4.6 - Prob. 15CQCh. 4.6 - What is the conductivity of a perfect dielectric?Ch. 4.6 - Prob. 17CQCh. 4.6 - Prob. 18CQCh. 4.6 - Determine the density of free electrons in...Ch. 4.6 - Prob. 13ECh. 4.6 - A 50 m long copper wire has a circular cross...Ch. 4.6 - Prob. 15ECh. 4.7 - What is a polar material? A nonpolar material?Ch. 4.7 - Prob. 20CQCh. 4.7 - What happens when dielectric breakdown occurs?Ch. 4.7 - Find E1 in Fig. 4-19 if E2=x2y3+z3(v/m),1=20,2=80,...Ch. 4.7 - Repeat Exercise 4.16 for a boundary with surface...Ch. 4.8 - What are the boundary conditions for the electric...Ch. 4.8 - Prob. 23CQCh. 4.9 - How is the capacitance of a two-conductor...Ch. 4.9 - What are fringing fields and when may they be...Ch. 4.10 - To bring a charge q from infinity to a given point...Ch. 4.10 - Prob. 27CQCh. 4.10 - The radii of the inner and outer conductors of a...Ch. 4.11 - What is the fundamental premise of the image...Ch. 4.11 - Given a charge distribution, what are the various...Ch. 4.11 - Use the result of Example 4-13 to find the surface...Ch. 4 - A cube 2 m on a side is located in the first...Ch. 4 - Prob. 2PCh. 4 - Find the total charge contained in a round-top...Ch. 4 - If the line charge density is given by l = 24y2...Ch. 4 - Find the total charge on a circular disk defined...Ch. 4 - If J = 4xz (A/m2), find the current I flowing...Ch. 4 - Prob. 7PCh. 4 - An electron beam shaped like a circular cylinder...Ch. 4 - Prob. 9PCh. 4 - A line of charge of uniform density occupies a...Ch. 4 - A square with sides of 2 m has a charge of 40 C at...Ch. 4 - Three point charges, each with q = 3 nC, are...Ch. 4 - Charge q1 = 6 C is located at (1 cm, 1 cm, 0) and...Ch. 4 - A line of charge with uniform density = 8 (C/m)...Ch. 4 - Prob. 15PCh. 4 - A line of charge with uniform density l extends...Ch. 4 - Repeat Example 4-5 for liie circular disk of...Ch. 4 - Multiple charges at different locations are said...Ch. 4 - Three infinite lines of charge, all parallel to...Ch. 4 - Prob. 20PCh. 4 - A horizontal strip lying in the xy plane is of...Ch. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Charge Q1 is uniformly distributed over a thin...Ch. 4 - The electric flux density inside a dielectric...Ch. 4 - Prob. 26PCh. 4 - An infinitely long cylindrical shell extending...Ch. 4 - If the charge density increases linearly with...Ch. 4 - A spherical shell with outer radius b surrounds a...Ch. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A circular ring of charge of radius a lies in the...Ch. 4 - Prob. 33PCh. 4 - Find the electric potential V at a location a...Ch. 4 - For the electric dipole shown in Fig. 4-13, d = 1...Ch. 4 - For each of the distributions of the electric...Ch. 4 - Two infinite lines of charge, both parallel to the...Ch. 4 - Given the electric field E=R18R2(V/m) find the...Ch. 4 - An infinitely long line of charge with uniform...Ch. 4 - The xy plane contains a uniform sheet of charge...Ch. 4 - A cylindrical bar of silicon has a radius of 4 mm...Ch. 4 - Repeat Problem 4.41 for a bar of germanium with e...Ch. 4 - A 100 m long conductor of uniform cross-section...Ch. 4 - Prob. 44PCh. 4 - Apply the result of Problem 4.44 to find the...Ch. 4 - A 2 103 mm thick square sheet of aluminum has 5 cm...Ch. 4 - A cylinder-shaped carbon resistor is 8 cm in...Ch. 4 - With reference to Fig. 4-19, find E1 if...Ch. 4 - An infinitely long cylinder of radius a is...Ch. 4 - If E=R150(V/m) at the surface of a 5-cm conducting...Ch. 4 - Figure P4.51 shows three planar dielectric slabs...Ch. 4 - Determine the force of attraction in a...Ch. 4 - Dielectric breakdown occurs in a material whenever...Ch. 4 - An electron with charge Qe = 1.61019 C and mass me...Ch. 4 - In a dielectric medium with r = 4, the electric...Ch. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Conducting wires above a conducting plane carry...Ch. 4 - Prob. 63P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 14.5 H and resistance R = 5.50 connected to a 24.0-V battery and switch as in the figure shown below. After the switch is closed, find the following. @ (a) the maximum current carried by the electromagnet 4.36 A (b) the time constant of the circuit 2.63 ✔S (c) the time it takes the current to reach 95.0% of its maximum value. 0.132 x Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. starrow_forwardA parallel plate capacitor has its plates separated by 0.5 mm of air. The area plates is 2 m? and they are charged to a p.d.of 100 V.The plates are pulled apart untill they are separated by1 mm of air.Assuming the p.d. to remain unchanged, what is the mechanical force experienced the plates?arrow_forwardWhat is the correct answer?arrow_forward
- e4arrow_forward"Given the potential function V = x²ytz+3), determine the electric potential at (3, 4, -6)." -108 ml/C 324 mJ/C -108 J/C 324 J/Carrow_forwardAt t=0 a charged 10{μF capacitance is connected to a voltmeter, as shown in Figure P4.5. The meter can be modeled as a resistance. At t=0 the meter reads 50 V. At t=30s, the reading is 25 V. Find the resistance of the voltmeter.arrow_forward
- Goal:The intent of this problem is to understand how electrostatic models can be used outside of electrical engineering. This basic model is used to understand chemical reactions, bonding, and other forms of atomic processes. It also shows you the strength of electrostatic forces in an atom. The Thomson model of a hydrogen atom is a sphere of positive charge with radius Ro with an electron (a point charge) at its center. The total positive charge equals the electronic charge q. What is the force of attraction between an electron at a distance R from the center of the sphere of positive charge? OOOO qR 4π€, Ro O q²R 3πEO q²R 4π€, Roarrow_forwardB) Define the permeability (ur) of the material. If you are required to design IH and IpH inductors, what type of core will you use in your design and why? support your answer by equations.arrow_forwardI need the answer as soon as possiblearrow_forward
- 4G 5:05 B/s 4. The figure shows a plastic rod having a uniform charge distribution -Q. The rod has been bent into a circular arc of radius r. In terms of Q andr, what is the electric field E (magnitude and direction) due to the rod at point P? (You are being asked to derive an equation for E, as we’ve done in lecture for charge distributions.) Show every mathematical step. Plastic rod of charge -Q 60° PY60° Solved: 4. The Figure Shows A Plastic Rod Having A Uniform ... Chegg Images may be subject to copyright. O Zoom Related Images 4 The n lew ref pen e er hael pide al l t apla Apla i a ETe d Whdee pal heof sirodar wt-youd ng Coidthe .. 1 Te y e co padPypng e hdentdid geovarrow_forward4. Suppose now that we include a real and ideal battery to create a RC circuit with the resistors in parallel. Imagine that the resistors in parallel go before the capacitor. The battery has an electromotive force E = 4 V. (a) What is kirchoff's law for a charging and discharging capacitor? write out both general expressions and explain what the differences are. Draw plots for both. (b) Over time, the capacitor begins to oscillate in its separation. Solve for the capacitor separation x(t) as a function of time t for a charging unknown сараcitor.arrow_forwardplease solve queeeestion 4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Electric Charge and Electric Fields; Author: Professor Dave Explains;https://www.youtube.com/watch?v=VFbyDCG_j18;License: Standard Youtube License