EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 20P
To determine
The electric field at the coordinate
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Two infinitely long, parallel lines of charge with linear charge densities 9.0 µC/m and −9.0 µC/m are separated by a distance of 0.50 m. What is the net electric field at point C as shown in the figure below? (Express your answers in vector form.)
A point charge of 12 nC is located at the origin. four uniform line charges are located in the x = 0 plane as follows: 80 nC/m at y = -1
and -5 m, -50 nC/m at y = -2 and -4 m. Find D at P(0,-3, 2), D = Blank 1ax + Blank 2ay + Blank 3az pC/m^2. Use one decimal
place.
Blank 1 Add your answer
Blank 2 Add your answer
Blank 3 Add your answer
Solve it fast plz
Chapter 4 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 4.2 - What happens to Maxwells equations under static...Ch. 4.2 - How is the current density J related to the volume...Ch. 4.2 - Prob. 3CQCh. 4.2 - A square plate residing in the xy plane is...Ch. 4.2 - A thick spherical shell centered at the origin...Ch. 4.3 - When characterizing the electrical permittivity of...Ch. 4.3 - If the electric field is zero at a given point in...Ch. 4.3 - State the principle of linear superposition as it...Ch. 4.3 - Four charges of 10 C each are located in free...Ch. 4.3 - Two identical charges are located on the x axis at...
Ch. 4.3 - In a hydrogen atom the electron and proton are...Ch. 4.3 - An infinite sheet with uniform surface charge...Ch. 4.4 - Explain Gausss law. Under what circumstances is it...Ch. 4.4 - How should one choose a Gaussian surface?Ch. 4.4 - Two infinite lines, each carrying a uniform charge...Ch. 4.4 - A thin spherical shell of radius a carries a...Ch. 4.4 - A spherical volume of radius a contains a uniform...Ch. 4.5 - What is a conservative field?Ch. 4.5 - Why is the electric potential at a point in space...Ch. 4.5 - Prob. 11CQCh. 4.5 - Why is it usually easier to compute V for a given...Ch. 4.5 - Prob. 13CQCh. 4.5 - Determine the electric potential at the origin due...Ch. 4.5 - A spherical shell of radius a has a uniform...Ch. 4.6 - What are the electromagnetic constitutive...Ch. 4.6 - Prob. 15CQCh. 4.6 - What is the conductivity of a perfect dielectric?Ch. 4.6 - Prob. 17CQCh. 4.6 - Prob. 18CQCh. 4.6 - Determine the density of free electrons in...Ch. 4.6 - Prob. 13ECh. 4.6 - A 50 m long copper wire has a circular cross...Ch. 4.6 - Prob. 15ECh. 4.7 - What is a polar material? A nonpolar material?Ch. 4.7 - Prob. 20CQCh. 4.7 - What happens when dielectric breakdown occurs?Ch. 4.7 - Find E1 in Fig. 4-19 if E2=x2y3+z3(v/m),1=20,2=80,...Ch. 4.7 - Repeat Exercise 4.16 for a boundary with surface...Ch. 4.8 - What are the boundary conditions for the electric...Ch. 4.8 - Prob. 23CQCh. 4.9 - How is the capacitance of a two-conductor...Ch. 4.9 - What are fringing fields and when may they be...Ch. 4.10 - To bring a charge q from infinity to a given point...Ch. 4.10 - Prob. 27CQCh. 4.10 - The radii of the inner and outer conductors of a...Ch. 4.11 - What is the fundamental premise of the image...Ch. 4.11 - Given a charge distribution, what are the various...Ch. 4.11 - Use the result of Example 4-13 to find the surface...Ch. 4 - A cube 2 m on a side is located in the first...Ch. 4 - Prob. 2PCh. 4 - Find the total charge contained in a round-top...Ch. 4 - If the line charge density is given by l = 24y2...Ch. 4 - Find the total charge on a circular disk defined...Ch. 4 - If J = 4xz (A/m2), find the current I flowing...Ch. 4 - Prob. 7PCh. 4 - An electron beam shaped like a circular cylinder...Ch. 4 - Prob. 9PCh. 4 - A line of charge of uniform density occupies a...Ch. 4 - A square with sides of 2 m has a charge of 40 C at...Ch. 4 - Three point charges, each with q = 3 nC, are...Ch. 4 - Charge q1 = 6 C is located at (1 cm, 1 cm, 0) and...Ch. 4 - A line of charge with uniform density = 8 (C/m)...Ch. 4 - Prob. 15PCh. 4 - A line of charge with uniform density l extends...Ch. 4 - Repeat Example 4-5 for liie circular disk of...Ch. 4 - Multiple charges at different locations are said...Ch. 4 - Three infinite lines of charge, all parallel to...Ch. 4 - Prob. 20PCh. 4 - A horizontal strip lying in the xy plane is of...Ch. 4 - Prob. 22PCh. 4 - Prob. 23PCh. 4 - Charge Q1 is uniformly distributed over a thin...Ch. 4 - The electric flux density inside a dielectric...Ch. 4 - Prob. 26PCh. 4 - An infinitely long cylindrical shell extending...Ch. 4 - If the charge density increases linearly with...Ch. 4 - A spherical shell with outer radius b surrounds a...Ch. 4 - Prob. 30PCh. 4 - Prob. 31PCh. 4 - A circular ring of charge of radius a lies in the...Ch. 4 - Prob. 33PCh. 4 - Find the electric potential V at a location a...Ch. 4 - For the electric dipole shown in Fig. 4-13, d = 1...Ch. 4 - For each of the distributions of the electric...Ch. 4 - Two infinite lines of charge, both parallel to the...Ch. 4 - Given the electric field E=R18R2(V/m) find the...Ch. 4 - An infinitely long line of charge with uniform...Ch. 4 - The xy plane contains a uniform sheet of charge...Ch. 4 - A cylindrical bar of silicon has a radius of 4 mm...Ch. 4 - Repeat Problem 4.41 for a bar of germanium with e...Ch. 4 - A 100 m long conductor of uniform cross-section...Ch. 4 - Prob. 44PCh. 4 - Apply the result of Problem 4.44 to find the...Ch. 4 - A 2 103 mm thick square sheet of aluminum has 5 cm...Ch. 4 - A cylinder-shaped carbon resistor is 8 cm in...Ch. 4 - With reference to Fig. 4-19, find E1 if...Ch. 4 - An infinitely long cylinder of radius a is...Ch. 4 - If E=R150(V/m) at the surface of a 5-cm conducting...Ch. 4 - Figure P4.51 shows three planar dielectric slabs...Ch. 4 - Determine the force of attraction in a...Ch. 4 - Dielectric breakdown occurs in a material whenever...Ch. 4 - An electron with charge Qe = 1.61019 C and mass me...Ch. 4 - In a dielectric medium with r = 4, the electric...Ch. 4 - Prob. 56PCh. 4 - Prob. 57PCh. 4 - Prob. 58PCh. 4 - Prob. 59PCh. 4 - Prob. 60PCh. 4 - Prob. 61PCh. 4 - Conducting wires above a conducting plane carry...Ch. 4 - Prob. 63P
Knowledge Booster
Similar questions
- Problem 4. A positive point charge q₁5 [nc] is on the x-axis at x₁ = -1 [m] and a second positive point charge q₂ = 4 [nc] is on the x-axis at x₂ = 3 [m]. dl = b. a. and Point A. C. 91 Point A is on the x-axis at XA = 8 [m]. 0 = EzA=[ O+x O-x O+y O-y d. and Point A. d2 = 2 m 92 Find the distance between 91 6 created by the charge q₁ at Point A. E₁A= Ĵ [N/C] Find the distance between 92 Find the magnitude of È ₁A. [N/C] m x, m Calculate ₁4 the electric field 1A created by the charge 92 at Point A. E₂A î+ [N/C] g. Consider a point located 6 m from the origin, what will be the direction of the net electric field created by the charges at this point? Find the magnitude of È 2A. [N/C] Calculate E24 the electric field 2Aarrow_forwardμ_0 = 4π×10^(−7) T.m/Aarrow_forwardProblem 4. = 5 [nc] is on the x-axis at x₁ = -1 [m] and a second positive point charge q₂ = 5 [nc] is on the x-axis at x₂ = 3 [m]. a. Point A. d1 = b. |Ē₁A| = Point A is on the x-axis at XÃ = 7 [m]. Ẻ₁A d. Point A. d2 = e. = E2Al 2A C. by the charge q₁ at Point A. i + [N/C] Find the distance between 92 and 0 = = O+x O-x O+y O-y A positive point charge q₁ 2 92 Find the distance between q₁ and m Find the magnitude of E₁A [N/C] m f. by the charge q₂2 at Point A. Calculate ₁4 the electric field created 1A [N/C] g. Consider a point located 6 m from the origin, what will be the direction of the net electric field created by the charges at this point? 2 + x, m Find the magnitude of È 2A. [N/C] Calculate E24 the electric field created 2Aarrow_forward
- 2) If the angle the displacement makes with the electric field is 0° it means the charge is moving along (or parallel to) the field vectors. Is work being done? How will the angle here affect the work done, explain your answer with a diagram? Last Revised 12/21/2015 Equipotential Surfaces – 3.1arrow_forwardFind the work done in carrying a 5 C from P(1, 2, -4) to R(3, –5, 6) in an electric field E az + z?ay + 2y² zaz V/m. %3D Select your answer. 1050 J 1950 J -1050 J -1950 Jarrow_forwardCan you solve this question pleasearrow_forward
- A rectangular toroid has 5000 turns and a self- inductance of 0.50 H. If the height is 0.20 m what is the ratio of the outer radius to the inner radius?arrow_forwardelectromagnetic field)I want a detailed solution because my teacher changes the numbers. I want a detailed solution. Understand the solutionarrow_forward5. In a Cartesian plane, 4 charges are placed as follows: a 5C charge is placed at (0, 3), -4C charge is placed at (5, -2), 1.5C charge is placed at (0, 0) and a -6C charge is placed at (-4, -4). Determine the force felt by the charge at the origin due to the presence of the other charges.arrow_forward
- Given the electric field, E-â,9/r? v/m. Find the electric potential of point A with respect to point B where A is at 2 m and B at -4 m, both on the z-axis. A z = 2m B z = -4marrow_forwardCoaxial cable has inner radius 1mm and outer radius 3mm and length 10m. %3D with material with po between them.it is carrying current I= 5A find inductance .H multiply by N 6.8x10 6 34x10-6 11x10-6 2.2x106arrow_forwardExpress the field D = (x2 + y2) – 1 (6ax + 8ay) in cylindrical components and cylindrical variables.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,