Electrical Engineering: Principles & Applications (7th Edition)
7th Edition
ISBN: 9780134484143
Author: Allan R. Hambley
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.9P
In physics, the half-life is often used to characterize exponential decay of physical quantities such as radioactive substances. The half-life is the time required for the quantity to decay to half of its initial value. The time constant for the voltage on a capacitance discharging through a resistance is T = RC. Find an expression for the half-life of the voltage in terms of R and C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose we have a capacitance C discharging through a resistance R. Define and give an expression for the time constant. To attain a long time constant, do we need large or small values for R? For C?
A capacitor can be used .............................................. in electrical circuits. Which of the followings fit?
To regulate the currents
To regulate the voltages
To store energy by deposition of electric charges
To provide energy as passive circuit element
To store energy in the form of magnetic field
To create time varying voltages and currents
To dissipate energy
To convert elektrik energy into heat or light
The equation of the charge on the capacitor at any time t for an LRC series circuits is givenas
a) Assume there is no initial charge and current, sketch the graph of the charge.
b) What happen to the charge after a long time?
c) State the transient and the steady state terms.
Chapter 4 Solutions
Electrical Engineering: Principles & Applications (7th Edition)
Ch. 4 - Suppose we have a capacitance C discharging...Ch. 4 - The dielectric materials used in real capacitors...Ch. 4 - The initial voltage across the capacitor shown in...Ch. 4 - A 100F capacitance is initially charged to 1000 V....Ch. 4 - At t = 0, a charged 10{ F capacitance is connected...Ch. 4 - At time t1 , a capacitance C is charged to a...Ch. 4 - Given an initially charged capacitance that begins...Ch. 4 - The initial voltage across the capacitor shown in...Ch. 4 - In physics, the half-life is often used to...Ch. 4 - We know that a 50F capacitance is charged to an...
Ch. 4 - We know that the capacitor shown in Figure P4.11...Ch. 4 - The purchasing power P of a certain unit of...Ch. 4 - Derive an expression for vC(t) in the circuit of...Ch. 4 - Suppose that at t= 0, we connect an uncharged 10 F...Ch. 4 - Suppose we have a capacitance C that is charged to...Ch. 4 - A person shuffling across a dry carpet can be...Ch. 4 - Prob. 4.17PCh. 4 - Consider the circuit shown in Figure P4.18. Prior...Ch. 4 - List the steps for dc steady-state analysis of RLC...Ch. 4 - Explain why we replace capacitances with open...Ch. 4 - Solve for the steady-state values of i1, i2, and...Ch. 4 - Consider the circuit shown in Figure P4.22. What...Ch. 4 - In the circuit of Figure P4.23, the switch is in...Ch. 4 - The circuit shown in Figure P4.24 has been set up...Ch. 4 - Solve for the steady-state values of i1 , i2, i3,...Ch. 4 - The circuit shown in Figure P4.26 is operating in...Ch. 4 - Prob. 4.27PCh. 4 - Consider the circuit of Figure P4.28 in which the...Ch. 4 - For the circuit shown in Figure P4.29, the switch...Ch. 4 - Consider the circuit of Figure P4.30 in which the...Ch. 4 - Give the expression for the time constant of a...Ch. 4 - A circuit consists of switches that open or close...Ch. 4 - The circuit shown in Figure P4.33 is operating in...Ch. 4 - Consider the circuit shown in Figure P4.34. The...Ch. 4 - Repeat Problem P4.34 given iL(0)=0A .Ch. 4 - Real inductors have series resistance associated...Ch. 4 - Determine expressions for and sketch is(t) to...Ch. 4 - For the circuit shown in Figure P4.38,, find an...Ch. 4 - The circuit shown in Figure P4.39 is operating in...Ch. 4 - Consider the circuit shown in Figure P4.40. A...Ch. 4 - Due to components not shown in the figure, the...Ch. 4 - The switch shown in Figure P4.42 has been closed...Ch. 4 - Determine expressions for and sketch vR(t) to...Ch. 4 - What are the steps in solving a circuit having a...Ch. 4 - Prob. 4.45PCh. 4 - Solve for vC(t) for t > 0 in the circuit of Figure...Ch. 4 - Solve for v(t) for t > 0 in the circuit of Figure...Ch. 4 - Prob. 4.48PCh. 4 - Consider the circuit shown inFigure P4.49. The...Ch. 4 - Consider the circuit shown in Figure P4.50. The...Ch. 4 - The voltage source shown in Figure P4.51 is called...Ch. 4 - Determine the form of the particular solution for...Ch. 4 - Determine the form of the particular solution for...Ch. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - How can first-or second-order circuits be...Ch. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Sketch a step response for a second-order system...Ch. 4 - A dc source is connected to a series RLC circuit...Ch. 4 - Repeat Problem P4.61 for R = 40 .Ch. 4 - Repeat Problem P4.61 for R = 20 .Ch. 4 - Prob. 4.64PCh. 4 - Repeat Problem P4.64 for R=50 .Ch. 4 - Repeat Problem P4.64 for R=500 .Ch. 4 - Solve for i(t) for t > 0 in the circuit of Figure...Ch. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Use MATLAB to derive an expression for vc(t)in the...Ch. 4 - Prob. 4.72PCh. 4 - Consider the circuit shown in FigureP4.50 in which...Ch. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Use MATLAB to solve for the mesh currents in the...Ch. 4 - The switch m the circuit shown in Figure T4.1 is...Ch. 4 - Prob. 4.2PTCh. 4 - Consider the circuit shown in Figure T4.3. Figure...Ch. 4 - Consider the circuit shown in Figure T4.4 in which...Ch. 4 - Write the MATLAB commands to obtain the solution...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- how do i calculate the inverse capacitance and its uncertainty if the capacitance value 1.8748+/- 0.0006. please show steps im using this example to do my other values.arrow_forward1. What impedance vector 0 – j22 represents:A. A pure resistance.B. A pure inductance.C. A pure capacitance.D. An inductance combined with a resistance.arrow_forwardDraw the inductance and resistance voltages on an oscilloscope screen in accordance with their polarity. In the drawing, it should start with voltage changes and values and should be stable. Write the Time/Div and Volt/Div steps made on the oscilloscope during the measurement on the oscilloscope screen drawing. Specify the voltage labels in the drawing. The current through the circuit has the same variation as the resistor voltage measured from the equation V=I/R, but is 1/47 times the value.arrow_forward
- The current flowing through a 100-mH inductance is given by 0.5 sin (1000t) A, in which the angle is in radians. Find expressions and sketch the waveforms to scale for the voltage, power, and stored energy.arrow_forwarda. Show how you would connect all five capacitors to get a maximum capacitance and find the maximum capacitance in terms of C. b. Show how you would connect all five capacitors to get a minimum capacitance and find the minimum capacitance in terms of C.arrow_forwardDerive the expressions of voltages across resistor and capacitor and the current through the circuit in charging and discharging phases of an RC circuit excited by DC voltage. Name some uses of transient currents. 2.arrow_forward
- Fill in the blanksadd, capacitance, charge capacity, dielectric, dissipate, electrical circuits, , passive, plates,proximity, storesA capacitor is a 1 …………. two-terminal electrical component that 2 ……… potential energy in anelectric field. The effect of a capacitor is known as 3. …………... While some capacitance exists betweenany two electrical conductors in 4. …………… in a circuit, a capacitor is a component designed to 5.…… capacitance to a circuit. The capacitor was originally known as a condenser.The physical form and construction of practical capacitors vary widely and many capacitor types are incommon use. Most capacitors contain at least two electrical conductors often in the form of metallic 6.………… or surfaces separated by a 7. ………medium. A conductor may be a foil, thin film, or anelectrolyte. The nonconducting dielectric acts to increase the capacitor's 8. ………… ………. Materialscommonly used as dielectrics include glass, ceramic, plastic film, paper, mica, and oxide…arrow_forwardA capacitor "C", an inductor "L" and a switch "S" are connected in series. When the switch is open, the plate to the left of the capacitor has charge "Qo". The switch is closed the load and current vary sinusoidally with time. Represent graphically the load "Qo" and the intensity of current "I" as a function of time "t", and explain why the current leads the load by a phase difference of 90°.arrow_forwardFor a given RC charging circuit with R 82KOhms, C 150UF and Vs 18 V, i. Calculate the capacitor charging voltage at t- ii. Specify the charging current at 2T where T= RC. iii. Explain the effect in the charging period if the value of R is doubled with the capacitance value of C kept constant. Prove your answer by computing the resulting full-charge periods when R is 82KOhms and when R is doubled with C kept constant. %3D (1 mark) (1 mark) 3D3T. (2 marks)arrow_forward
- To measure the capacitance C of a capacitor, you attach the capacitor to a battery and wait until it is fully charged. You then disconnect the capacitor from the battery and let it discharge through a resistor of resistance RR. You measure the time T1/2 that it takes the voltage across the resistor to decrease to half its initial value at the instant that the connection to the capacitor is first completed. You repeat this for several different resistors. You plot the data as T1/2 versus R and find that they lie close to a straight line that has slope 9.00 μF. What is the capacitance C of the capacitor?arrow_forwardR₁ (10 m) 0.2 H ми 00000 &₁ = 50V R₂ (200) E₂ = 30Varrow_forwardExercise: A square-wave voltage with amplitude 2 V and frequency 500 Hz is applied across an ideal inductor. The inductance is 500 mH. Based on the mathematics discussed above, we can say that the current will be a triangle-wave. What is the amplitude of the triangle-wave current?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Capacitors Explained - The basics how capacitors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=X4EUwTwZ110;License: Standard YouTube License, CC-BY