Fundamentals Of Engineering Thermodynamics
9th Edition
ISBN: 9781119391388
Author: MORAN, Michael J., SHAPIRO, Howard N., Boettner, Daisie D., Bailey, Margaret B.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.6CU
To determine
The heat transfer rate associated with the given steady-state process.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
T-12
An oil pump operating at steady state delivers oil at a rate of 11 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled
as incompressible, has a density of 70 Ib/ft³ and experiences a pressure rise from inlet to exit of 40 Ibf/in?. There is no significant
elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its
surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump.
Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp.
T-12
Chapter 4 Solutions
Fundamentals Of Engineering Thermodynamics
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft³ and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Determine the velocity of the oil at the exit of the pump, in ft/s. V₂ = i ft/sarrow_forwardAn oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft³ and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Determine the velocity of the oil at the exit of the pump, in ft/s. Your answer is correct. V₂ = 26.192 Hint Step 2 * Your answer is incorrect. Win ft/s Determine the power required for the pump, in hp. i7.73 hp Attempts: 1 of 4 usedarrow_forwardAn oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft³ and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Your answer is correct. Determine the velocity of the oil at the exit of the pump, in ft/s. V₂ = 26.192 Hint Step 2 ft/s * Your answer is incorrect. Determine the power required for the pump, in hp. i 1.49595 hp Attempts: 1 of 4 usedarrow_forward
- An oil pump operating at steady state delivers oil at a rate of 10 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 70 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Determine the power required for the pump, in hp.arrow_forwardAn oil pump operating at steady state delivers oil at a rate of 13 lb/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 85 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 Your answer is correct. Determine the velocity of the oil at the exit of the pump, in ft/s. V₂ = 28.064 Hint Step 2 * Your answer is incorrect. ft/s Determine the power required for the pump, in hp. Win = 1.60155105 eTextbook and Media hp Attempts: 1 of 4 usedarrow_forwardAn oil pump operating at steady state delivers oil at a rate of 11 lb/s through a 1-in-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 55 lb/ft3 and experiences a pressure rise from inlet to exit of 40 lb/in². There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp. Step 1 * Your answer is incorrect. Determine the velocity of the oil at the exit of the pump, in ft/s. V₂ = i 32.08 ft/sarrow_forward
- An oil pump operating at steady state delivers oil at a rate of 6 kg/s through a 2.5-cm- diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 1360 kg/m³ and experiences a pressure rise from inlet to exit of 2.75 bar. There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. a. Determine the velocity of the oil at the exit of the pump, in m/s. b. Determine the power required for the pump, in W. Oil Pump Mflow=6kg/s Poil 1360 kg/m³ P2-p1-2.75 bar T₂-T₁=0 D=2.5 cmarrow_forward5. Air enters a compressor at a rate of 0.5 Kgs¹ with a velocity of 6.4 ms', specific volume 0.85 m³Kg¹ and a pressure of 1 bar. It leaves the compressor at a pressure of 6.9 bar with a specific volume of 0.16 m³Kg¹ and a velocity of 4.7 ms¹. The internal energy of the air at exit is greater than that at entry by 85 KJKg'. The compressor is fitted with a cooling system which removes heat at a rate of 60 KJs¹. Calculate the power required to drive the compressor and the cross- sectional areas of the inlet and outlet pipes.arrow_forwardLiquid flows at steady state at a rate of 2 lb/s through a pump, which operates to raise the elevation of the liquid 100 ft from control volume inlet to exit. The liquid specific enthalpy at the inlet is 40.09 Btu/lb and at the exit is 40.94 Btu/lb. The pump requires 3 Btu/s of power to operate. If kinetic energy effects are negligible and gravitational acceleration is 32.174 ft/s2, the heat transfer rate associated with this steady state process is most closely: A) 2.02 Btu/s from the liquid to the surroundings. B) 3.98 Btu/s from the surroundings to the liquid. C) 4.96 Btu/s from the surroundings to the liquid. D) 1.04 Btu/s from the liquid to the surroundings.arrow_forward
- Air expands adiabatically in a piston–cylinder assembly from an initial state where p1 = 100 lbf/in.2, v1 = 3.704 ft3/lb, and T1 = 1000 °R, to a final state where p2 = 20 lbf/in.2 The process is polytropic with n = 1.4. The change in specific internal energy, in Btu/lb, can be expressed in terms of temperature change as Δu=(0.171)(T2 - T1).Determine the final temperature, in °R.Kinetic and potential energy effects can be neglected.arrow_forwardThermo 12arrow_forwardSteam enters a turbine operating at steady state at 800°F and 450 Ibf/in2 and leaves as a saturated vapor at 0.8 Ibf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in °F, and the volumetric flow rate of the steam at the inlet, in ft³/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY