Fundamentals Of Engineering Thermodynamics
9th Edition
ISBN: 9781119391388
Author: MORAN, Michael J., SHAPIRO, Howard N., Boettner, Daisie D., Bailey, Margaret B.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.29P
To determine
Power developed
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.2, and 180°F, respectively; at the exit the pressure is 120 lbf/in.2 The pump requires 1/25 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 Btu/lb · °R.Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.
A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a
rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.2, and 180°F, respectively; at the exit the pressure is 90 lbf/in.²
The pump requires 1/25 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58
lb/ft3 and constant specific heat of 1 Btu/lb. °R.
Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.
AT =
°R
A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.2, and 180°F, respectively; at the exit the pressure is 60 lbf/in.2 The pump requires 1/ 35 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 Btu/lb · °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.
Chapter 4 Solutions
Fundamentals Of Engineering Thermodynamics
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water vapor at p₁ = 5 bar, T₁ of 1.3 m³/s. The vapor exits at p2 = = 360° C enters a turbine operating at steady state with a volumetric flow rate 1.5 bar, T₂ = 230° C with no stray heat transfer to the surroundings. Determine the power produced by the turbine Wcy in kW. Assume kinetic and potential energy effects are negligible. CV W cv = CV = Ex: 111.0 kW Water vapor P1, T₁ 1|(AV)1 Turbine 0 2 V P2, T2arrow_forwardA pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 Ibf/in.², and 180°F, respectively; at the exit the pressure is 120 Ibf/in.2 The pump requires 1/ 15 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 Ib/ft3 and constant specific heat of 1 Btu/lb · °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. AT = i °Rarrow_forwardT-5arrow_forward
- T-12arrow_forwardA turbine operating under steady-flow conditions receives steam at the following state; pssure,100 bar; specific internal energy 2773 kJ/kg, velocity 30 m/s. the state of steam leaving the turbine is as follow: pressure 1 bar, specific internal energy 2450 kJ/kg, velocity 90 m/s. Heat is rejected to the surroundings at the rate of 0.25 kW and the rate of steam flow through the turbine is 0.4 kg/s calculate the power developed by the .turbinearrow_forwardLiquid water flows isothermally at 20°C through a one-inlet, one-exit duct operating at steady state. The duct's inlet and exit P2 = 4.8 bar T = 320°C diameters are 0.02 m and 0.04 m, Water vapor (AV)2 = (AV)3 respectively. At the inlet, the velocity is 50 m/s and the pressure is 1 bar. At the exit, determine the mass flow rate, in kg/s, and V, T A1 = 0.2 m? P1 = 5 bar 3 velocity, in m/s. P3= 4.8 bar T3 = 320°Carrow_forward
- An oil pump operating at steady state delivers oil at a rate of 10 Ib/s through a 1-in.-diameter exit pipe. The oil, which can be modeled as incompressible, has a density of 100 lb/ft and experiences a pressure rise from inlet to exit of 40 Ibf/in?. There is no significant elevation difference between inlet and exit, and the inlet kinetic energy is negligible. Heat transfer between the pump and its surroundings is negligible, and there is no significant change in temperature as the oil passes through the pump. Determine the velocity of the oil at the exit of the pump, in ft/s, and the power required for the pump, in hp.arrow_forwardSteam enters a turbine operating at steady state at 850oF and 450 lbf/in2 and leaves as a saturated vapor at 1.2 lbf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in oF, and the volumetric flow rate of the steam at the inlet, in ft3/s.arrow_forward6.14arrow_forward
- T-7arrow_forward12arrow_forwardAir enters a nozzle operating at steady-state at 800°R, with a negligible velocity, and exits with a velocity of 1500 ft/s. Heat transfer occurs from the nozzle to the surroundings at a rate of 10 Btu per lbm of air flowing. Determine the temperature at the exit, °R. Assume: o air is an ideal gas, variable specific heats, and o potential energy effects are negligible.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY