Fundamentals Of Engineering Thermodynamics
9th Edition
ISBN: 9781119391388
Author: MORAN, Michael J., SHAPIRO, Howard N., Boettner, Daisie D., Bailey, Margaret B.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.42P
To determine
The rate of heat transfer to the cooling water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 300 kPa, and a velocity of 40 m/s. At the exit, the
temperature is 90°C and the pressure is 240 kPa. The pipe diameter is 0.01 m.
Determine:
(a) the mass flow rate of the refrigerant, in kg/s,
(b) the velocity at the exit, in m/s, and
(c) the rate of heat transfer between the pipe and its surroundings, in kW.
Part A
X Your answer is incorrect.
Determine the mass flow rate of the refrigerant, in kg/s.
i
! kg/s
7. Refrigerant 134a enters a water-jacketed compressor operating at steady state at -10°C,
1.4 bar, with a mass flow rate of 4.2 kg/s, and exits at 50°C, 12 bar. The compressor
power required is 150 kW. Neglecting kinetic and potential energy effects, determine the
rate of heat transfer to the cooling water circulating through the water jacket.
Question 31
Chapter 4 Solutions
Fundamentals Of Engineering Thermodynamics
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A steam turbine operates with an inlet condition of 30 bar, 400 0C, 160 m/s and an outlet state of a saturated vapour at 0.7 bar with a velocity of 100 m/s. The mass flow rate is 1200 kg/min and the power output is 10800 kW. present process is on T-V diagram. Determine the magnitude and direction of the heat transfer rate in kJ/min if the potential energy change is negligible.arrow_forwardRefrigerant 22 flows through a horizontal tube having an inside diameter of 4 cm. Therefrigerant flows at steady state and at the entrance to the tube it has with a quality of 0.3,temperature of 28°C, and velocity of 8 m/s. The refrigerant exits the tube as a saturatedliquid at 14 bar.Question:Determine:(a) the mass flow rate of the refrigerant, in kg/s.(b) the velocity of the refrigerant at the exit, in m/s.(c) the rate of heat transfer, in kW, and its associated direction with respect to therefrigerantarrow_forwardCarbon dioxide gas is compressed at steady state from a pressure of 1.5 bar and a temperature of 0°C to a pressure of 3.5 bar and a temperature of 40°C. The gas enters the compressor with a velocity of 9 m/s and exits with a velocity of 25 m/s. The mass flow rate is 1360 kg/hr. The magnitude of the heat transfer rate from the compressor to its surroundings is 5% of the compressor power input. Use the ideal gas model with cp = 0.88 kJ/kg K and neglect potential energy effects. a. Determine the flow area at the inlet, in m². b. Determine the compressor power, in kW. T₁=0°C P₁=1.5 bar mflow=1360kg/hr V₁-9 m/s Qout (5%) Win Win = ?? T₂-40°C P2=3.5 bar V₂-25 m/sarrow_forward
- THERMODYNAMICS - Conservation of Mass UPLOAD AND EXPLAIN COMPLETE SOLUTION. Consider steam that enters a turbine at 70 bar, 530oC with a velocity of 64 m/s. The turbine is operating at steady state conditions and the steam leaves the turbine as a dry saturated vapor at 10 bar. The inlet diameter of the turbine is 0.45 m and the outlet diameter is 3.6 m. Determine the mass flow rate of steam through the turbine.arrow_forwardA well-insulated turbine operating at steady state, produces 23 MW of power with a steam flow rate of 40 kg/h. Water vapor enters the turbine at 360°C at a speed of 35 m/s. It comes out from turbine at 0.06 bar pressure and 120 m/s velocity as saturated steam. Potential energy effects are neglected. Determine the inlet pressure in bar.arrow_forwardT-10arrow_forward
- Steam enters a well-insulated turbine operating at steady state with negligible velocity at 4 MPa, 320°C. The steam expands to an exit pressure of 0.07 MPa and a velocity of 90 m/s. The diameter of the exit is 0.6 m. Neglecting potential energy effects, plot the power developed by the turbine, in kW, versus the steam quality at the turbine exit ranging from 0.9 to 1.0.arrow_forwardSteam enters the first-stage turbine shown in Figure (right) at 40 bar and 500°C with a volumetric flow rate of 90 m³/min. Steam exits the turbine at 20 bar and 400°C. The steam is then reheated at constant pressure to 500°C before entering the second-stage turbine. Steam leaves the second stage as saturated vapor at 0.6 bar. For operation at steady state, and ignoring stray heat transfer and kinetic and potential energy effects, determine the a. mass flow rate of the steam, in kg/h. b. total power produced by the two stages of the turbine, in kW. Steam + P₁ = 40 bar T₁=500°C (AV), -90 m³/min Turbine P=20 bar 7₂-400°C 2 Reheater Qecheater Turbine 20 bar T₁-500°C Saturated vapor. P4-0.6 bar Powerarrow_forwardRefrigerant 134a at p₁ = 30 lb/in², T1₁ = 40°F enters a compressor operating at steady state with a mass flow rate of 325 lb/h and exits as saturated vapor at p2 = 160 lbf/in². Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 3.25 hp. Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr.°R.arrow_forward
- Refrigerant 134a enters a well-insulated nozzle at 200 lbf/in.?, 170°F, with a velocity of 120 ft/s and exits at 50 lbf/in.? with a velocity of 1500 ft/s. For steady-state operation, and neglecting potential energy effects, determine the temperature, in °F, and the quality of the refrigerant at the exit. T2 = i °F X2 = iarrow_forwardAir enters a compressor operating at steady state at 14.7 lbf/in.2 and 60°F and is compressed to a pressure of 150 lbf/in.2 As the air passes through the compressor, it is cooled at a rate of 10 Btu per lb of air flowing by water circulated through the compressor casing. The volumetric flow rate of the air at the inlet is 5000 ft3/min, and the power input to the compressor is 700 hp. The air behaves as an ideal gas, there is no stray heat transfer, and kinetic and potential effects are negligible. Determine (a) the mass flow rate of the air, lb/s, and (b) the temperature of the air at the compressor exit, in °F.arrow_forwardThe figure shows a turbine operating at a steady state that provides power to an air compressor and an electric generator. Air enters the turbine with a volumetric flow rate of 1.3 m³/s at 527°C, 10.0 bar and exits the turbine at 107°C, 1 bar. The turbine provides power of 900 kW to the compressor and 1400 kW to the generator. Air can be modeled as an ideal gas and kinetic and potential energy changes are negligible. a. Determine the mass flow rate of the air, in kg/s. b. For the turbine as the control volume, determine the rate of heat transfer, in kW. Air 1 Compressor Air W₁ = 900 kW (AV)1. P1 T₁ = 527°C Turbine 2 WEG = 1400 kW Electric Generator T₂ = 107°C P2 = 1 bar +arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY