Fundamentals Of Engineering Thermodynamics
9th Edition
ISBN: 9781119391388
Author: MORAN, Michael J., SHAPIRO, Howard N., Boettner, Daisie D., Bailey, Margaret B.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.51P
To determine
The allowed range of mass flow rate for the water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K.
If the designer wants to ensure no water vapor is present in the exiting water stream, what is the minimum mass flow rate for the water, in kg/s?
Question 32
Air as an ideal gas flows through the compressor and heat exchanger shown in the figure. A separate liquid stream also flows through the heat exchanger. The data given are for operation at steady state. Stray heat transfer to the surroundings can be neglected, as can all kinetic and potential energy changes. Determine the compressor power, in kW, and the mass flow rate of the cooling water, in kg/s.
Chapter 4 Solutions
Fundamentals Of Engineering Thermodynamics
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4.30 Refrigerant 134a enters a heat exchanger operating ai steady state as a superheated vapour at 10 bars. 60°C. where it is cooled and condensed to saturated liquid at 10 bars. The mass flow rate of the refrigerant is 10 kg/min. A separate stream of air enters the heat exchanger at 37°C with a mass flow rate of 80 kg/min. Ignoring heat transfer from the outside of the heat exchanger and neglecting kinetic and potential energy effects, determine the exit air temperature, in °C.arrow_forwardQ/ Super-heated vapor enters condenser of a steam power plant at 2 bar and 250 °C. The vapor is condensed at 0.2 bar and 60 °C. Condensed cooling water enters into another streamline at 25 °C and the water exits at 40 °C. The heat is transferred from the condensing steam to the cooling water with no change in kinetic and potential energies. Calculate (a) the ratio of the cooling water mass flow rate to the condensing steam mass flow rate. (b) The specific heat transfer from the condensing steam to the cooling water. Steam 2 bar 200 C Coodensate 0.2 bar 2 60 C Cooling Cooling water water 25 C 40 Carrow_forwardA small nuclear reactor is cooled by passing liquid sodium liquid sodium out of the reactor at 2 bar and 400 ° C. It is cooled to 320 ° C by passing through a heat exchanger before returning to the reactor. In the heat exchanger heat is transferred from the sodium to the water, which enters the exchanger at 100 bar and 49 ° C and exits at the same pressure as saturated steam. The mass flow of sodium is 10,000 kg / h, its specific heat is constant and is 1.25 kJ / kg "C and the pressure drop is negligible. Determine (a) the mass flow in kg / h of evaporated water. in the heat exchanger. and (b) the heat flux transferred between the two fluids in kJ / h Neglect the variations of kinetic and potential energy through it.arrow_forward
- Need help please :)arrow_forwardSeparate streams of air and water flow through the compressor and heat exchanger arrangement shown in the figure below, where m˙1= 0.6 kg/s and T6= 50°C. Steady-state operating data are provided on the figure. Heat transfer with the surroundings can be neglected, as can all kinetic and potential energy effects. The air is modeled as an ideal gas. Determine:(a) the total power for both compressors, in kW.(b) the mass flow rate of the water, in kg/s.arrow_forwardSeparate streams of steam and air flow through the turbine and heat exchanger arrangement shown in the figure below, where air enters location 5 at a rate of 1000 kg/min. The left turbine (Turbine 1) is able to produce 12,000 kW of power. Steady-state operating data are provided on the figure. Heat transfer with the surroundings can be neglected, as can all kinetic and potential energy effects. W2 = ? Turbine Turbine 2 P3 = 10 bar T3 = ? T2 = 400°C_ P2= 10 bar T = 240°C P4 = 1 bar Steam in P1 = 20 bar +6 T = 600°C www T5 = 1500 K -5 Ps = 1.35 bar Heat exchanger V T = 1200 K P6 = 1 bar Air in Determine: T3, in °C. • the mass flow rate of steam at 1, in kg/s. • the power output of the second turbine, in kW. • the magnitude of heat transfer between the steam and air, in kW. • the direction of the heat transfer (i.e., to the steam or from the steam).arrow_forward
- A heat exchanger in which air passes over tubes through which cold Refrigerant-22 flows. Air enters with a volumetric flow rate of 50 m³/min at 37 °C, 1.2 bar, and exits at 25 °c, 100 kPa. R-22 enters the tubes at 9.1 bar with a quality of 13 % and exits at 9 bar, 25 °C. (Ignore heat transfer from the outside of the heat exchanger, and neglect kinetic and potential energy effects). Heat Exchanger Air Air ý =50 min >B=lo0 T=37°C > P = 1.2 bar bTI R-22V P4 =9 bar TA =25% R-22 B=9.1 bar X3 = 13%arrow_forward* Your answer is incorrect. A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.², and 180°F, respectively; at the exit the pressure is 90 lbf/in.² The pump requires 1/15 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 Btu/lb. °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. ΔΤ : = i 0.36 °Rarrow_forwardA condenser of a thermal power plant operates as a surface heat exchanger, 10,000 kg / h of water vapor enters at 0.5 bar and with a quality of 0.95 and the condensate leaves as a saturated liquid at the same pressure. The cooling water enters the condenser as a separate stream at 1 bar and 20 ° C and exits at 35 ° C without pressure change, assuming steady state operation, determine: a) The temperature of the condensed steam b) The amount of cooling water required in m3 / s c) The heat energy transmitted by the steam to the cooling water in Kwarrow_forward
- Steady-state operating data are shown in the figure for an open feedwater heater.Heat transfer from the feedwater heater to its surroundings occurs at an average outer surfacetemperature of 50°C at a rate of 100 kW. Ignore the effects of motion and gravity and let T 0 =25°C, p0 = 1 bar. Determine(a) the ratio of the incoming mass flow rates, ?̇# /?̇ $ .(b) the rate of exergy destruction, in kW.arrow_forwardSteady-state operating data are provided for a compressor and heat exchanger in the figure below. The power input to the compressor is 50 kW. As shown in the figure, nitrogen (N2) flows through the compressor and heat exchanger with mass flow rate of 0.25 kg/s. The nitrogen is modeled as an ideal gas. A separate cooling stream of helium, modeled as an ideal gas with k=1.67, also flows through the heat exchanger. Stray heat transfer and kinetic and potential energy effects are negligible. Find: a) Enthalpy change of Nitrogen from inlet to the compressor and exit from Heat exchanger, ( ℎ1-ℎ3) in kJ/kg, b) Enthalpy change of Helium from inlet to and exit from Heat exchanger, (ℎ5-ℎ4) in kJ/kg, c) Mass flow rate of the helium in kg/s.arrow_forwardItem 9 An open system with only one inlet and one exit operates at steady state. Mass enters the system at a flow rate of 8 kg/s with the following properties: h = 3245 kJ/kg, s = 8.0514 kJ/kg - K, and V = 18 m/s. At the exit the properties are as follows: h = 2139 kJ/kg, s = 8.089 kJ/kg · K, and V = 29 m/s. The device produces 8799 kW shaft work while rejecting some heat to the atmosphere at 30 °C. Part A Do a mass analysis to determine the mass flow rate at the exit. Express your answer to three significant figures. ΑΣφ |vec ? Submit Request Answer Part B Do an energy analysis to determine the rate of heat transfer (include sign). Express your answer to three significant figures and include the appropriate units. ? Value Units Submit Request Answer Part C Do an entropy analysis to evaluate the rate of entropy generation in the system's universe. Express your answer to three significant figures. ΑΣφ vec ? kW Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY