Fundamentals Of Engineering Thermodynamics
9th Edition
ISBN: 9781119391388
Author: MORAN, Michael J., SHAPIRO, Howard N., Boettner, Daisie D., Bailey, Margaret B.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.85P
To determine
The power input to the tank.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Refrigerant 134a at p1 = 30 lb/in?, T1 = 40°F enters a compressor operating at steady state with a mass flow rate of 400 lb/h and exits
as saturated vapor at p2 = 160 lb;/in?. Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in
kinetic and potential energy can be ignored. The power input to the compressor is 4 hp.
Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr-°R.
The figure belows shows three components of an air-conditioning system, where 105°F and
4.5 lb/s. Refrigerant 134a flows through a throttling valve and a heat exchanger while air flows through a fan and the same heat exchanger. Data for steady-state operation are given on the figure. There is no significant heat transfer between any of the components and the surroundings. Kinetic and potential energy effects are negligible.
Modeling air as an ideal gas with constant cp = 0.240 Btu/lb · °R, determine the mass flow rate of the air, in lb/s.
Refrigerant 134a at p1 = 30 lbe/in?, T1 = 40°F enters a compressor operating at steady state with a mass flow rate of 400 Ib/h and exits
as saturated vapor at p2 = 160 Ib/in?. Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in
kinetic and potential energy can be ignored. The power input to the compressor is 4 hp.
Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr.°R.
Chapter 4 Solutions
Fundamentals Of Engineering Thermodynamics
Ch. 4 - Prob. 4.1ECh. 4 - Prob. 4.2ECh. 4 - Prob. 4.3ECh. 4 - Prob. 4.4ECh. 4 - Prob. 4.5ECh. 4 - Prob. 4.6ECh. 4 - Prob. 4.7ECh. 4 - Prob. 4.8ECh. 4 - Prob. 4.9ECh. 4 - Prob. 4.10E
Ch. 4 - Prob. 4.11ECh. 4 - Prob. 4.12ECh. 4 - Prob. 4.13ECh. 4 - Prob. 4.14ECh. 4 - Prob. 4.15ECh. 4 - Prob. 4.1CUCh. 4 - Prob. 4.2CUCh. 4 - Prob. 4.3CUCh. 4 - Prob. 4.4CUCh. 4 - Prob. 4.5CUCh. 4 - Prob. 4.6CUCh. 4 - Prob. 4.7CUCh. 4 - Prob. 4.8CUCh. 4 - Prob. 4.9CUCh. 4 - Prob. 4.10CUCh. 4 - Prob. 4.11CUCh. 4 - Prob. 4.12CUCh. 4 - Prob. 4.13CUCh. 4 - Prob. 4.14CUCh. 4 - Prob. 4.15CUCh. 4 - Prob. 4.16CUCh. 4 - Prob. 4.17CUCh. 4 - Prob. 4.18CUCh. 4 - Prob. 4.19CUCh. 4 - Prob. 4.20CUCh. 4 - Prob. 4.21CUCh. 4 - Prob. 4.22CUCh. 4 - Prob. 4.23CUCh. 4 - Prob. 4.24CUCh. 4 - Prob. 4.25CUCh. 4 - Prob. 4.26CUCh. 4 - Prob. 4.27CUCh. 4 - Prob. 4.28CUCh. 4 - Prob. 4.29CUCh. 4 - Prob. 4.30CUCh. 4 - Prob. 4.31CUCh. 4 - Prob. 4.32CUCh. 4 - Prob. 4.33CUCh. 4 - Prob. 4.34CUCh. 4 - Prob. 4.35CUCh. 4 - Prob. 4.36CUCh. 4 - Prob. 4.37CUCh. 4 - Prob. 4.38CUCh. 4 - Prob. 4.39CUCh. 4 - Prob. 4.40CUCh. 4 - Prob. 4.41CUCh. 4 - Prob. 4.42CUCh. 4 - Prob. 4.43CUCh. 4 - Prob. 4.44CUCh. 4 - Prob. 4.45CUCh. 4 - Prob. 4.46CUCh. 4 - Prob. 4.47CUCh. 4 - Prob. 4.48CUCh. 4 - Prob. 4.49CUCh. 4 - Prob. 4.50CUCh. 4 - Prob. 4.51CUCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.30PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - Prob. 4.44PCh. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.50PCh. 4 - Prob. 4.51PCh. 4 - Prob. 4.52PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - Prob. 4.56PCh. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Prob. 4.60PCh. 4 - Prob. 4.61PCh. 4 - Prob. 4.62PCh. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Prob. 4.65PCh. 4 - Prob. 4.66PCh. 4 - Prob. 4.67PCh. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Prob. 4.76PCh. 4 - Prob. 4.77PCh. 4 - Prob. 4.78PCh. 4 - Prob. 4.79PCh. 4 - Prob. 4.80PCh. 4 - Prob. 4.81PCh. 4 - Prob. 4.82PCh. 4 - Prob. 4.83PCh. 4 - Prob. 4.84PCh. 4 - Prob. 4.85PCh. 4 - Prob. 4.86PCh. 4 - Prob. 4.87PCh. 4 - Prob. 4.88P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigerant 134a at p1 = 30 lbş/in?, T1 = 40°F enters a compressor operating at steady state with a mass flow rate of 250 lb/h and exits as saturated vapor at p2 = 160 lbę/in?. Heat transfer occurs from the compressor to its surroundings, which are at To = 40°F. Changes in kinetic and potential energy can be ignored. The power input to the compressor is 2.5 hp. Determine the heat transfer rate for the compressor, in Btu/hr, and the entropy production rate for the compressor, in Btu/hr-°R.arrow_forwardSuperheated steam enters a turbine at 7 MPa, 350 , and a mass flow rate of 5000 kg/h. Steam leaves the turbine at 7 bar and a quality of 88%. The heat loss from the turbine is 13 kW. Calculate the rate of shaft work developed by the turbine. Calculate the rate of shaft work developed by the turbine if it is operating at steady state.arrow_forwardWater vapors at 40 bar enters a pipe fitting (adapter) with a velocity of 169 m/s and exits thefitting at 10 bar and 572°F. If the temperature at the inlet is 1004°F., calculate the exit velocity.The system is assumed to be at steady state.arrow_forward
- Identify the working substance, specify the kind of system and sketch the system boundary. PLEASE ANSWER it in 1hr.arrow_forward1. As shown in the figure below, Refrigerant 134a enters a condenser operating at steady state at 70 lbf/in2, 160 °F and is condensed to saturated liquid at 60 lbf/in on the outside of tubes through which cooling water flows. In passing through the tubes, the cooling water increases in temperature by 20 'F and experiences no significant pressure drop. Cooling water can be modeled as incompressible with v-0.0161 ft'/lb and c = 1 Btu/lb R. The mass flow rate of the refrigerant is 3100 lb/h. Neglecting kinetic and potential energy effects and ignoring heat transfer from the outside of the condenser, determine: (a) The volumetric flow rate of the entering cooling water, in gal/min (b) The rate of heat transfer, in Btu/h, to the cooling water from the condensing refrigerant (5 points) Refrigerant 134a P= 70 in. T= 160 F 3100 heh 7,-7,-20F-20R Reirigerant 134a [P-60 lbin V Saturated liquidarrow_forwardA pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 Ibf/in.?, and 180°F, respectively; at the exit the pressure is 120 Ibf/in.? The pump requires 1/ 15 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 lb/ft³ and constant specific heat of 1 Btu/lb · °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.arrow_forward
- Q1: An air receiver contains air at 16 bar and 42°C. A valve is opened and some air is allowed to blow out to atmosphere. The pressure of the air in the receiver drops rapidly to 12 bar when the valve is then closed. Assuming that the mass in the receiver undergoes a reversible adiabatic process, calculate the initial and final mass of air if you know that the amount of air which has left the receiver is 18.04 kgs.arrow_forwardA pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.?, and 180°F, respectively; at the exit the pressure is 60 Ibf/in.? The pump requires 1/25 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 Ib/ft and constant specific heat of 1 Btu/lb. °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. AT = i °Rarrow_forwardAn insulated, rigid tank whose volume is 0.5 m3 is connected by a valve to a large vessel holding steam at 40 bar, 500°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 20 bar.Determine the final temperature of the steam in the tank, in °C, and the final mass of the steam in the tank, in kg.arrow_forward
- Please help me solve this problem. I need it asap. Thank you.arrow_forwardA steam turbine operates with an inlet condition of 30 bar, 400 0C, 160 m/s and an outlet state of a saturated vapour at 0.7 bar with a velocity of 100 m/s. The mass flow rate is 1200 kg/min and the power output is 10800 kW. present process is on T-V diagram. Determine the magnitude and direction of the heat transfer rate in kJ/min if the potential energy change is negligible.arrow_forwardAir flows through a nozzle. It enters at 20 bar and 1100°F and exits at 10 bar and 800°F. The inlet diameter ratio between outlet diameter is 3. Consider steady state, determine air inlet and outlet velocities, in ft/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY