MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4, Problem 4.4P
The minimum value of small−signal resistance of a PMOS transistor is to be
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the base current for this emitter-
stabilized bias circuit.
+15 V
Free-form Snip
120 k2
1 ka
silicon
B = 80
500
Select one:
a. 0.119 mA
O b. 89.0 mA
O c. 89.1 µA
d. None of the above
A long silicon pn junction photodiode has the following parameters at T =300 K:
ni=1.5×1010 cm³3, Na =1016 cm³, Nd =2×10!5 cm³, Dp= 10 cm²/s, Dn=25 cm²/s,
TH0 = 5x10-7 s, Tp0=10-7 s, ɛr=11.7. The cross-sectional area of the diode is A=103
cm?. Assume that a reverse-biased voltage of 5 volts is applied and that a uniform
generation rate for electron-hole pairs of GL=1021 cm³ sl exists throughout the
entire photodiode. The total steady-state photocurrent is equal to...
0.759 mA O
0.975 mA O
0.597 mA O
0.579 mA O
A long silicon pn junction photodiode has the following parameters at T =300 K:
ni=1.5×1010 cm³3, Na =1016 cm³, Nd =2×1015 cm³, Dp= 10 cm?/s, Dn=25 cm²/s,
Tmo = 5×10-7 s, Tp0=10-7 s, ɛr=11.7. The cross-sectional area of the diode is A=103
cm?. Assume that a reverse-biased voltage of 5 volts is applied and that a uniform
generation rate for electron-hole pairs of GL=1021 cm³ s1 exists throughout the
entire photodiode. The total steady-state photocurrent is equal to...
0.579 mA
0.975 mA
0.759 mA
0.597 mA
Chapter 4 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 4 - Prob. 4.1EPCh. 4 - For the circuit shown in Figure 4.1, VDD=3.3V and...Ch. 4 - Prob. 4.1TYUCh. 4 - For the circuit shown in Figure 4.1, VDD=3.3V and...Ch. 4 - For the circuit in Figure 4.1, the circuit and...Ch. 4 - The parameters for the circuit in Figure 4.8 are...Ch. 4 - A transistor has the same parameters as those...Ch. 4 - The parameters of the circuit shown in Figure 4.14...Ch. 4 - Consider the circuit shown in Figure 4.14. Assume...Ch. 4 - For the circuit shown in Figure 4.19, the...
Ch. 4 - The commonsource amplifier in Figure 4.23 has...Ch. 4 - Consider the commonsource amplifier in Figure 4.24...Ch. 4 - The parameters of the transistor shown in Figure...Ch. 4 - The sourcefollower circuit in Figure 4.26 has...Ch. 4 - The circuit and transistor parameters for the...Ch. 4 - Consider the circuit shown in Figure 4.28 with...Ch. 4 - Prob. 4.8TYUCh. 4 - The transistor in the sourcefollower circuit shown...Ch. 4 - Consider the circuit shown in Figure 4.35 with...Ch. 4 - For the circuit shown in Figure 4.32, the circuit...Ch. 4 - The bias voltage for the enhancementload amplifier...Ch. 4 - Assume the depletionload amplifier in Figure...Ch. 4 - For the circuit shown in Figure 4.45(a), assume...Ch. 4 - The transconductance gm of the transistor in the...Ch. 4 - The transconductance gm of the transistor in the...Ch. 4 - For the enhancement load amplifier shown in Figure...Ch. 4 - For the cascade circuit shown in Figure 4.49, the...Ch. 4 - The transistor parameters of the NMOS cascode...Ch. 4 - The transistor parameters of the circuit in Figure...Ch. 4 - Reconsider the sourcefollower circuit shown in...Ch. 4 - Prob. 4.13TYUCh. 4 - For the circuit shown in Figure 4.59, the...Ch. 4 - Discuss, using the concept of a load line, how a...Ch. 4 - How does the transistor widthtolength ratio affect...Ch. 4 - Discuss the physical meaning of the smallsignal...Ch. 4 - Prob. 4RQCh. 4 - Prob. 5RQCh. 4 - Discuss the general conditions under which a...Ch. 4 - Why, in general, is the magnitude of the voltage...Ch. 4 - What are the changes in dc and ac characteristics...Ch. 4 - Sketch a simple sourcefollower amplifier circuit...Ch. 4 - Sketch a simple commongate amplifier circuit and...Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - State the advantage of using transistors in place...Ch. 4 - Prob. 14RQCh. 4 - An NMOS transistor has parameters VTN=0.4V ,...Ch. 4 - A PMOS transistor has parameters VTP=0.6V ,...Ch. 4 - An NMOS transistor is biased in the saturation...Ch. 4 - The minimum value of smallsignal resistance of a...Ch. 4 - An nchannel MOSFET is biased in the saturation...Ch. 4 - The value of for a MOSFET is 0.02V1 . (a) What is...Ch. 4 - Prob. 4.7PCh. 4 - The parameters of the circuit in Figure 4.1 are...Ch. 4 - The circuit shown in Figure 4.1 has parameters...Ch. 4 - For the circuit shown in Figure 4.1, the...Ch. 4 - In our analyses, we assumed the smallsignal...Ch. 4 - Using the results of Problem 4.11, find the peak...Ch. 4 - Consider the circuit in Figure 4.14 in the text....Ch. 4 - A commonsource amplifier, such as shown in Figure...Ch. 4 - For the NMOS commonsource amplifier in Figure...Ch. 4 - The parameters of the circuit shown in Figure...Ch. 4 - Repeat Problem 4.15 if the source resistor is...Ch. 4 - The ac equivalent circuit of a commonsource...Ch. 4 - Consider the ac equivalent circuit shown in Figure...Ch. 4 - The transistor in the commonsource amplifier in...Ch. 4 - The parameters of the MOSFET in the circuit shown...Ch. 4 - For the commonsource amplifier in Figure P4.22,...Ch. 4 - The transistor in the commonsource circuit in...Ch. 4 - Prob. 4.24PCh. 4 - For the commonsource circuit in Figure P4.24, the...Ch. 4 - Design the common-source circuit in Figure P4.26...Ch. 4 - For the commonsource amplifier shown in Figure...Ch. 4 - For the circuit shown in Figure P4.28, the...Ch. 4 - Design a commonsource amplifier, such as that in...Ch. 4 - The smallsignal parameters of an enhancementmode...Ch. 4 - The opencircuit (RL=) voltage gain of the ac...Ch. 4 - Consider the sourcefollower circuit in Figure...Ch. 4 - The source follower amplifier in Figure P4.33 is...Ch. 4 - Consider the circuit in Figure P4.34. The...Ch. 4 - The quiescent power dissipation in the circuit in...Ch. 4 - The parameters of the circuit in Figure P4.36 are...Ch. 4 - Consider the source follower circuit in Figure...Ch. 4 - For the sourcefollower circuit shown in Figure...Ch. 4 - In the sourcefollower circuit in Figure P4.39 with...Ch. 4 - For the circuit in Figure P4.39, RS=1k and the...Ch. 4 - Prob. D4.41PCh. 4 - The current source in the sourcefollower circuit...Ch. 4 - Consider the sourcefollower circuit shown in...Ch. 4 - Prob. 4.44PCh. 4 - Figure P4.45 is the ac equivalent circuit of a...Ch. 4 - The transistor in the commongate circuit in Figure...Ch. 4 - The smallsignal parameters of the NMOS transistor...Ch. 4 - For the commongate circuit in Figure P4.48, the...Ch. 4 - Consider the PMOS commongate circuit in Figure...Ch. 4 - The transistor parameters of the NMOS device in...Ch. 4 - The parameters of the circuit shown in Figure 4.32...Ch. 4 - For the commongate amplifier in Figure 4.35 in the...Ch. 4 - Consider the NMOS amplifier with saturated load in...Ch. 4 - For the NMOS amplifier with depletion load in...Ch. 4 - Consider a saturated load device in which the gate...Ch. 4 - The parameters of the transistors in the circuit...Ch. 4 - A sourcefollower circuit with a saturated load is...Ch. 4 - For the sourcefollower circuit with a saturated...Ch. 4 - The transistor parameters for the commonsource...Ch. 4 - Consider the circuit in Figure P4.60. The...Ch. 4 - The ac equivalent circuit of a CMOS commonsource...Ch. 4 - Consider the ac equivalent circuit of a CMOS...Ch. 4 - The parameters of the transistors in the circuit...Ch. 4 - Consider the sourcefollower circuit in Figure...Ch. 4 - Figure P4.65 shows a commongate amplifier. The...Ch. 4 - The ac equivalent circuit of a CMOS commongate...Ch. 4 - The circuit in Figure P4.67 is a simplified ac...Ch. 4 - Prob. 4.68PCh. 4 - The transistor parameters in the circuit in Figure...Ch. 4 - Consider the circuit shown in Figure P4.70. The...Ch. 4 - For the circuit in Figure P4.71, the transistor...Ch. 4 - For the cascode circuit in Figure 4.51 in the...Ch. 4 - The supply voltages to the cascode circuit in...Ch. 4 - Consider the JFET amplifier in Figure 4.53 with...Ch. 4 - For the JFET amplifier in Figure P4.75, the...Ch. 4 - The parameters of the transistor in the JFET...Ch. 4 - Consider the sourcefollower WET amplifier in...Ch. 4 - For the pchannel JFET sourcefollower circuit in...Ch. 4 - The pchannel JFET commonsource amplifier in Figure...Ch. 4 - Prob. 4.82CSPCh. 4 - A discrete commonsource circuit with the...Ch. 4 - Consider the commongate amplifier shown in Figure...Ch. 4 - A sourcefollower amplifier with the configuration...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- For this circuit if beta dc equals 80, the emitter current equals ........mA * 0.0 88 82 О 50 VBB 5V RB W 3.9 ΚΩ Rc 180 Ω Vcc 15 Varrow_forward1. Each E-MOSFET in the following figure has a Vas of +10 V or -10 V, depending on whether it is an n-channel or a p-channel device. Determine whether each MOSFET is on or off. ww 47 ΜΩ WWW113 10 ΜΩ +10 V www 10 ΚΩ E 10 MO Σ 10 ΜΩ (b) -25 V 4.7 karrow_forward:For the shown Network, find the collector current (Ic) of the npn transistor 4.7 ΚΩ 280 ΚΩ W 10V Beta = 90 .lc = 92.9394 mA.a Ic= 1.1827 mA.b O .lc = 178.083 mA .c O Ic= 2.9889 mA.d Oarrow_forward
- Calculate iT for an npn transistor with IS = 10−16 μAfor (a) VB E = 0.75 V and VBC = −3 V and(b) VBC = 0.75 V and VB E = −3 V.arrow_forwardDetermine the fime rece soary for the incducfor current to decay to are -fourth of its value at t=0. 24 V (* Uce tha oditor to formatarrow_forwardWhat is the collector-emitter voltage. Use the idealtransistor.Given:R B = Yellow, Violet, Yellow, GoldR C = Orange, Blue, Red, Goldarrow_forward
- O very low. O Zero. The Light Emitting Diode (LED) which emits light O gives a light output which increases with the increase in temperature. O is usually made from silicon. O uses a reverse-biased junction. O depends on the recombination of holes and electrons. The sen sitivity of a photodiode depends uponarrow_forwardRelated Problem A certain transistor has a Boc of 200. When the base current is 50 µA, determine the collector current. "Answers can be found at www.pearsonhighered.com/floydarrow_forwardDetermine:arrow_forward
- Determine β (DC) for a transistor where Ib = 60 μA and Ic = 3 mAarrow_forwardA certain transistor exhibits an αDC of 0.96. Determine IC when IE = 9.35 mA. Choices are: 9.74 mA 8.98 mAarrow_forwardCalculate the efficiency of a silicon-based solar cell having short circuit current density of Jsc = 42.2 mA/cm2 , open circuit voltage Voc = 706 mV and fill factor FF = 0.828. Remember that the irarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Diodes Explained - The basics how diodes work working principle pn junction; Author: The Engineering Mindset;https://www.youtube.com/watch?v=Fwj_d3uO5g8;License: Standard Youtube License