MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 4, Problem 4.16EP
For the cascade circuit shown in Figure 4.49, the transistor and circuit parameters are given in Example 4.16. Calculate the small−signal output resistance
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
An electric resistance space heater is designed such that it resembles a rectangular box 55 cm high, 75 cm long, and 20
cm wide filled with 45 kg of oil. The heater is to be placed against a wall, and thus heat transfer from its back surface is
negligible. The surface temperature of the heater is not to exceed 75°C in a room at 25°C for safety considerations.
The emissivity of the outer surface of the heater is 0.8 and the average temperature of the ceiling and wall surfaces is the
same as the room air temperature.
The properties of air at 1 atm and the film temperature are: k = 0.02753 W/m-°C, v=1.798 x 10-5 m²/s, Pr = 0.7228, and ẞ=
0.003096K-1
Wall
T₁ =75°C
Oil
€ = 0.8
Electric heater
Heating element
Disregarding heat transfer from the bottom and top surfaces of the heater in anticipation that the top surface will be used as a shelf,
determine the power rating of the heater in W.
The power rating of the heater is
W.
circuit 2
Suppose you have 8 LED's connected to port-B (Bo-B7) of PIC16F877A and one switch
connected to port-D (Do) as shown in figure below. Write a program code that performs a
nibble (4-bits) toggling: if the switch is released then LED's (Bo to B3) are OFF and LED's
(B4 to B7) are ON, while if the switch is pressed then LED's (Bo to B3) are ON and LED's
(B4 to B7) are OFF. Use 300ms delay for each case with 4MHz frequency.
13
14
22 NATHON 20
U1
OSC1/CLKIN
U2
33
REOINT
20
34
OSC2/CLKOUT
19
RB1
35
3
18
RB2
RADIANO debt0RB3PGM
30
4
17
37
5
10
RA1/AN1
RB4
38
RA2/ANZ/VREF-/CVREF
15
RB5
39097
RA3/AN3VREF RB6/PGC
7
14
40
RA4/TOCK/C1OUT
13
RB7/PGO
RAS/ANA/SS/CZOUT
15
RCO/T1OSO/TICKI
10
11
REQIANS/RD
18
RC1/T10S/CCP2
17
10
RE1/AN/WR
REZ/ANTICS
MCLR/Vpp/THV
RC2/CCP1
LED-BARGRAPH-RED
RC3/SCK/SCL
RC4/SDUSDA
RC5/SDO
Eng of ROSTX/CX
RC7/RX/DT
RDO/PSPO
RD1/PSP1
RD2PSP2
RO3/PSP3
RD4/PSP4
ROS/PSP5
RD6/PSP6
RD7/PSP7
PIC16F877A
+5V
R1
100R
Chapter 4 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 4 - Prob. 4.1EPCh. 4 - For the circuit shown in Figure 4.1, VDD=3.3V and...Ch. 4 - Prob. 4.1TYUCh. 4 - For the circuit shown in Figure 4.1, VDD=3.3V and...Ch. 4 - For the circuit in Figure 4.1, the circuit and...Ch. 4 - The parameters for the circuit in Figure 4.8 are...Ch. 4 - A transistor has the same parameters as those...Ch. 4 - The parameters of the circuit shown in Figure 4.14...Ch. 4 - Consider the circuit shown in Figure 4.14. Assume...Ch. 4 - For the circuit shown in Figure 4.19, the...
Ch. 4 - The commonsource amplifier in Figure 4.23 has...Ch. 4 - Consider the commonsource amplifier in Figure 4.24...Ch. 4 - The parameters of the transistor shown in Figure...Ch. 4 - The sourcefollower circuit in Figure 4.26 has...Ch. 4 - The circuit and transistor parameters for the...Ch. 4 - Consider the circuit shown in Figure 4.28 with...Ch. 4 - Prob. 4.8TYUCh. 4 - The transistor in the sourcefollower circuit shown...Ch. 4 - Consider the circuit shown in Figure 4.35 with...Ch. 4 - For the circuit shown in Figure 4.32, the circuit...Ch. 4 - The bias voltage for the enhancementload amplifier...Ch. 4 - Assume the depletionload amplifier in Figure...Ch. 4 - For the circuit shown in Figure 4.45(a), assume...Ch. 4 - The transconductance gm of the transistor in the...Ch. 4 - The transconductance gm of the transistor in the...Ch. 4 - For the enhancement load amplifier shown in Figure...Ch. 4 - For the cascade circuit shown in Figure 4.49, the...Ch. 4 - The transistor parameters of the NMOS cascode...Ch. 4 - The transistor parameters of the circuit in Figure...Ch. 4 - Reconsider the sourcefollower circuit shown in...Ch. 4 - Prob. 4.13TYUCh. 4 - For the circuit shown in Figure 4.59, the...Ch. 4 - Discuss, using the concept of a load line, how a...Ch. 4 - How does the transistor widthtolength ratio affect...Ch. 4 - Discuss the physical meaning of the smallsignal...Ch. 4 - Prob. 4RQCh. 4 - Prob. 5RQCh. 4 - Discuss the general conditions under which a...Ch. 4 - Why, in general, is the magnitude of the voltage...Ch. 4 - What are the changes in dc and ac characteristics...Ch. 4 - Sketch a simple sourcefollower amplifier circuit...Ch. 4 - Sketch a simple commongate amplifier circuit and...Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - State the advantage of using transistors in place...Ch. 4 - Prob. 14RQCh. 4 - An NMOS transistor has parameters VTN=0.4V ,...Ch. 4 - A PMOS transistor has parameters VTP=0.6V ,...Ch. 4 - An NMOS transistor is biased in the saturation...Ch. 4 - The minimum value of smallsignal resistance of a...Ch. 4 - An nchannel MOSFET is biased in the saturation...Ch. 4 - The value of for a MOSFET is 0.02V1 . (a) What is...Ch. 4 - Prob. 4.7PCh. 4 - The parameters of the circuit in Figure 4.1 are...Ch. 4 - The circuit shown in Figure 4.1 has parameters...Ch. 4 - For the circuit shown in Figure 4.1, the...Ch. 4 - In our analyses, we assumed the smallsignal...Ch. 4 - Using the results of Problem 4.11, find the peak...Ch. 4 - Consider the circuit in Figure 4.14 in the text....Ch. 4 - A commonsource amplifier, such as shown in Figure...Ch. 4 - For the NMOS commonsource amplifier in Figure...Ch. 4 - The parameters of the circuit shown in Figure...Ch. 4 - Repeat Problem 4.15 if the source resistor is...Ch. 4 - The ac equivalent circuit of a commonsource...Ch. 4 - Consider the ac equivalent circuit shown in Figure...Ch. 4 - The transistor in the commonsource amplifier in...Ch. 4 - The parameters of the MOSFET in the circuit shown...Ch. 4 - For the commonsource amplifier in Figure P4.22,...Ch. 4 - The transistor in the commonsource circuit in...Ch. 4 - Prob. 4.24PCh. 4 - For the commonsource circuit in Figure P4.24, the...Ch. 4 - Design the common-source circuit in Figure P4.26...Ch. 4 - For the commonsource amplifier shown in Figure...Ch. 4 - For the circuit shown in Figure P4.28, the...Ch. 4 - Design a commonsource amplifier, such as that in...Ch. 4 - The smallsignal parameters of an enhancementmode...Ch. 4 - The opencircuit (RL=) voltage gain of the ac...Ch. 4 - Consider the sourcefollower circuit in Figure...Ch. 4 - The source follower amplifier in Figure P4.33 is...Ch. 4 - Consider the circuit in Figure P4.34. The...Ch. 4 - The quiescent power dissipation in the circuit in...Ch. 4 - The parameters of the circuit in Figure P4.36 are...Ch. 4 - Consider the source follower circuit in Figure...Ch. 4 - For the sourcefollower circuit shown in Figure...Ch. 4 - In the sourcefollower circuit in Figure P4.39 with...Ch. 4 - For the circuit in Figure P4.39, RS=1k and the...Ch. 4 - Prob. D4.41PCh. 4 - The current source in the sourcefollower circuit...Ch. 4 - Consider the sourcefollower circuit shown in...Ch. 4 - Prob. 4.44PCh. 4 - Figure P4.45 is the ac equivalent circuit of a...Ch. 4 - The transistor in the commongate circuit in Figure...Ch. 4 - The smallsignal parameters of the NMOS transistor...Ch. 4 - For the commongate circuit in Figure P4.48, the...Ch. 4 - Consider the PMOS commongate circuit in Figure...Ch. 4 - The transistor parameters of the NMOS device in...Ch. 4 - The parameters of the circuit shown in Figure 4.32...Ch. 4 - For the commongate amplifier in Figure 4.35 in the...Ch. 4 - Consider the NMOS amplifier with saturated load in...Ch. 4 - For the NMOS amplifier with depletion load in...Ch. 4 - Consider a saturated load device in which the gate...Ch. 4 - The parameters of the transistors in the circuit...Ch. 4 - A sourcefollower circuit with a saturated load is...Ch. 4 - For the sourcefollower circuit with a saturated...Ch. 4 - The transistor parameters for the commonsource...Ch. 4 - Consider the circuit in Figure P4.60. The...Ch. 4 - The ac equivalent circuit of a CMOS commonsource...Ch. 4 - Consider the ac equivalent circuit of a CMOS...Ch. 4 - The parameters of the transistors in the circuit...Ch. 4 - Consider the sourcefollower circuit in Figure...Ch. 4 - Figure P4.65 shows a commongate amplifier. The...Ch. 4 - The ac equivalent circuit of a CMOS commongate...Ch. 4 - The circuit in Figure P4.67 is a simplified ac...Ch. 4 - Prob. 4.68PCh. 4 - The transistor parameters in the circuit in Figure...Ch. 4 - Consider the circuit shown in Figure P4.70. The...Ch. 4 - For the circuit in Figure P4.71, the transistor...Ch. 4 - For the cascode circuit in Figure 4.51 in the...Ch. 4 - The supply voltages to the cascode circuit in...Ch. 4 - Consider the JFET amplifier in Figure 4.53 with...Ch. 4 - For the JFET amplifier in Figure P4.75, the...Ch. 4 - The parameters of the transistor in the JFET...Ch. 4 - Consider the sourcefollower WET amplifier in...Ch. 4 - For the pchannel JFET sourcefollower circuit in...Ch. 4 - The pchannel JFET commonsource amplifier in Figure...Ch. 4 - Prob. 4.82CSPCh. 4 - A discrete commonsource circuit with the...Ch. 4 - Consider the commongate amplifier shown in Figure...Ch. 4 - A sourcefollower amplifier with the configuration...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Write a PIC16F877A program that flash ON the 8-LED's connected to port-B by using two switches connected to port-D (Do & D₁) as shown in figure below, according to the following scenarios: (Hint: Use 500ms delay for each case with 4MHz frequency) 1. When Do=1 then B₁,B3,B, are ON. 2. When Do 0 then Bo,B2,B4, B5, B6 are ON. 3. When D₁=1 then B4,B,,B6,B7 are ON. 4. When D₁-0 then Bo,B1,B2,B3 are ON. U1 5 33 OSC/CLION OSC2/CLKOUT ROOINT RB1 35 RB2 20 17 RACIANO RESPOM RATANT RAZIANZ/VREF-CVREF RBS RA3/AN3/VREF+ REPOC 39 14 40 RA4/TOCK C1OUT 13 RB7/PGO 12 RASIAN/SCOUT 15 ROOT1050/TICK +5V REGIANERD REVANDVIR REZANTICS RCMT10SUCCP2 17 RC2/CCP1 LED-BARGRAPH-RED RC3SCHISCL 23 --- MCUANTV RC4/SOSDA 24 RCS/SDO RCB/TICK RC7/RXDT 25 ROOPSPO RDMPSP1 RD2PSF2 RO3PSP3 RD4PSP4 RDSPSPS PIC16F877A ROOPSP RO7/PSP7 R2 R1 100R 100Rarrow_forwardQuestion 5 The following data were obtained from testing a 48-kVA 240/4800 V step up transformer. Open-circuit test Short-circuit test Voltage (V) 240 150 Current (I) 2 10 Power (W) 120 600 Determine the equivalent circuit of the transformer as viewed from the primary side. Ans: Rc = 480 ohm, Xm = 123.94 ohm, Reqp = 0.015 ohm, Xeqp = 0.034 ohmarrow_forwardFrom the following mass-spring system, obtain its transfer function and pole-zero wwwwwwww wwww diagram in MATLAB. Analyze how stability varies when entering values. wwwww (4)x1 ▷ x(t) M f(t) B f(t) is the input variable and x(t) is the controlled variable.arrow_forward
- R2 L3 C5 BRF_OUT HH Sine_OUT 100 1m 100n C3 C4 100n 100n Figure 9. Square to sine waveform converter circuit How do we make sense of this? First, we note that R2 and C3 form a first order low pass filter and L3 and C4 form another low pass filter. Both low pass filters have been set at the same cutoff frequency. The combination of both form a two stage filter to remove the high frequency content present in the DAB signal. Capacitor C5 is used to remove any residual DC offset in the signal. But let's just deal with the AC steady state response, which means that you don't need to know any of these details, and then can conveniently treat this circuit as a blackbox. What is the theoretical cutoff frequency for the RC and LC filters shown in Figure 9? Answer to within 1% accuracy. (a) RC Filter cutoff frequency (f 1) = kHzarrow_forwardFor the following steady-state AC circuit, find the complex output voltage, VO, shown in the diagram. Write the answer in polar form (angles in degrees), accurate within 1%. L1=0.7H, L2=5H, C=14F, R=0.60, and w=0.7 rad/s L1 m Vo R Vs 5/30°V Answer: ய ww L2 23arrow_forwardPlease draw logic circuitarrow_forward
- A 220-volt, 20-horsepower compound motor (long shunt, Figure 21–16A) has an armature resistance of 0.25 ohm, series field resistance of 0.19 ohm, and shunt field resistance of 33 ohms. a. Calculate the current taken by the motor at the instant of starting if it is con-nected directly to the 220-volt line. b. Calculate the current when the motor is running if the armature is developing 184 volts counter-emf.arrow_forwardDesign a modulo-11 ripple (asynchronous) up-counter with negative edge-triggered T flip-flops and draw the corresponding logic circuit. (I)Build the state diagram and extract the state table (II)Draw the logic circuit (III)What is the maximum modulus of the counter?arrow_forwardthe diagram show 4 motor connected to a k-35 controller. I would like detail explanation to know how the circuit work. Is the controller compatible with the motor? The motor shown is series, parallel or both?arrow_forward
- please draw logic diagram pleasearrow_forwardPlease draw the diagrams please thank youarrow_forwardA plane wave propagating through a medium with &,,-8 μr = 2 has: E = 0.5 e-j0.33z sin (108 t - ẞz) ax V/m. Determine (a) ẞ (b) The loss tangent (c) Wave impedance (d) Wave velocity (e) H fieldarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Diode Logic Gates - OR, NOR, AND, & NAND; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=9lqwSaIDm2g;License: Standard Youtube License