Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.48P
To determine
The age of a pre-Cambrian rock which contains
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a certain rock, the ratio of lead atoms to uranium atoms is 0.300.Assume that uranium has a half-life of 4.47 × 10^9 y and that the rock had no lead atoms when it formed. How old is the rock?
Potassium-argon dating is used to measure the age of rocks formed from cooled lava by determining the fraction of the original 40K remaining in a sample from the ratio of 40K:40Ar. Unusually, potassium-40 decays into both 40Ca (89.1% of the time) and 40Ar (10.9% of the time) with a half-life of 1:248 x 10^9 years.1. What is the calculated age of a sample in which the faction of 40K remaining was found to be 0.0043?2. Is this result physically plausible?
A geologist finds an old rock and wants to determine its age using rubidium-strontium dating. This is possible because 87Rb, which has a half-life of 4.75×1010 y, undergoes ? − decay and becomes 87Sr. The geologist determines that the ratio of 87Sr to 87Rb is 0.219. Assuming there was no 87Sr in the rock when it was formed, determine the age of the rock.age of rock =
Chapter 4 Solutions
Introduction To Health Physics
Ch. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - If we start with 5 mg of 210Pb , what would be the...Ch. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - For use in carcinogenesis studies, benzo(a)pyrene...
Ch. 4 - Prob. 4.11PCh. 4 - Calculate the number of beta particles emitted per...Ch. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - How much 234U is there in 1 metric ton of the...Ch. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - The mean concentration of potassium in crustal...Ch. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25PCh. 4 - Prob. 4.26PCh. 4 - Prob. 4.27PCh. 4 - Prob. 4.28PCh. 4 - Prob. 4.29PCh. 4 - Prob. 4.31PCh. 4 - Prob. 4.32PCh. 4 - Prob. 4.33PCh. 4 - Prob. 4.34PCh. 4 - Prob. 4.35PCh. 4 - Prob. 4.36PCh. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - Prob. 4.41PCh. 4 - Prob. 4.42PCh. 4 - Prob. 4.43PCh. 4 - What is the (a) half-life? (b) mean life (in...Ch. 4 - Prob. 4.45PCh. 4 - Prob. 4.46PCh. 4 - Prob. 4.47PCh. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Prob. 4.53PCh. 4 - Prob. 4.54PCh. 4 - Prob. 4.55P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose you have a pure radioactive material with a half-life of T1/2. You begin with N0 undecayed nuclei of the material at t = 0. At t=12T1/2, how many of the nuclei have decayed? (a) 14N0 (b) 12N0(C) 34N0 (d) 0.707N0 (e) 0.293N0arrow_forwardNatural uranium consists of 235U(percent abundance = 0.7200%, =3.121017/s ) and 238U (percent abundance = 99.27% , =4.921018/s ). What were the values for percent abundance of 235Uand 238Uwhen Earth formed 4.5109years ago?arrow_forwardWhat fraction of a radioactive sample has decayed after two half-lives have elapsed?arrow_forward
- (a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forwardNo stable nuclides exist that have Z greater than ___. (10.3)arrow_forward(a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forward
- Derive an approximate relationship between the energy of (decay and halflife using the following data. It may be useful to graph the leg t1/2 against Ea to find some straightline relationship. Table 31.3 Energy and HalfLife for (Decay Nuclide E( (MeV) t1/2 216Ra 9.5 0.18 (s 194Po 7.0 0.7 s 240Cm 6.4 27 d 226Ra 4.91 1600 y 232Th 4.1 1.41010yarrow_forwardIn a 3109 yearold rock that originally contained some 238U, which has a halflife of 4.5109 years, we expect to find some 238U remaining in it. Why are 226Ra, 222Rn, and 210Po also found in such a rock, even though they have much shorter halflives (1600 years, 3.8 days, and 133 days, respectively)?arrow_forwardis the heaviest stable nuclide, and its BEN is low compared with medium-mass nuclides. Calculate BEN for this nucleus and compare it with the approximate value obtained from the graph in Figure 10.7. fission of nuclei with mass numbers greater than that of Fe. are othermic processes.arrow_forward
- Radioactive substances follow a specific law of decay. Namely, if you have a sample of some radioactive isotope, the quantity left after a certain time, called the half-life and denoted T1/2, is one-half of what you had initially. If you wait a second half-life, then there will be half f what was left at the end of the first half-life. Since 1/2-1/2 = 1/4, you will have one-fourth of the original quantity left after two half-lives. You can continue with this procedure to find the fraction of the original sample that hasn't decayed after any number of half- lives. However, this would become quite cumbersome if you are interested in the quantity left after, say, 10 half-lives. In this case, the quantity you are looking for would be found by multiplying the original quantity by 10 factors or 1/2. To solve this problem, we use exponents. An exponent, a small number written above and to the right, tells you how many copies of a particular number are multiplied together. In our example,…arrow_forwardPotassium-argon dating is used to measure the age of rocks formed from cooled lava by determining the fraction of the original 40K remaining in a sample from the ratio of 40K:40Ar. Unusually, potassium-40 decays into both 40Ca (89.1% of the time) and 40Ar (10.9% of the time) with a half-life of 1:248 x 109 years. What is the calculated age of a sample in which the faction of 40K remaining was found to be 0.0043? Is this result physically plausible and why?arrow_forwardA sample of radioactive material is obtained from a very old rock. The activity of the rock over a period of time is monitored, and lnA is plotted as a function of t such as in Figure (b). The slope of the line has a value of -6.1 ×10^−8y^−1. FInd the half-life in years.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax