Electrical Engineering: Principles & Applications, 7th Edition
7th Edition
ISBN: 9780134485201
Author: Allan R. Hambley
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.48P
To determine
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the circuit shown in Figure P4.18. Prior to t=0, v 1 =100 V, and v 2 =0.a. Immediately after the switch is closed, what is the value of the current [i.e., what is thevalue of i( 0+ ) ]?b. Write the KVL equation for the circuit in terms of the current and initial voltages. Take thederivative to obtain a differential equation.c. What is the value of the time constant in this circuit?d. Find an expression for the current as a function of time.e. Find the value that v2 approaches as t becomes very large.
Pls help need asap...explain as you solve pls
P4.30. Consider the circuit of Figure P4.30 in which the switch has been closed for a long time
prior to t=0. Determine the values of v C (t) before t=0 and a long time after t=0. Also,
determine the time constant after the switch opens and expressions for v C (t). Sketch v C (t)
to scale versus time for -4sts16 s.
2 MA
30 V
2 uF
I MO
Figure P4.30
Chapter 4 Solutions
Electrical Engineering: Principles & Applications, 7th Edition
Ch. 4 - Suppose we have a capacitance C discharging...Ch. 4 - The dielectric materials used in real capacitors...Ch. 4 - The initial voltage across the capacitor shown in...Ch. 4 - A 100F capacitance is initially charged to 1000 V....Ch. 4 - At t = 0, a charged 10{ F capacitance is connected...Ch. 4 - At time t1 , a capacitance C is charged to a...Ch. 4 - Given an initially charged capacitance that begins...Ch. 4 - The initial voltage across the capacitor shown in...Ch. 4 - In physics, the half-life is often used to...Ch. 4 - We know that a 50F capacitance is charged to an...
Ch. 4 - We know that the capacitor shown in Figure P4.11...Ch. 4 - The purchasing power P of a certain unit of...Ch. 4 - Derive an expression for vC(t) in the circuit of...Ch. 4 - Suppose that at t= 0, we connect an uncharged 10 F...Ch. 4 - Suppose we have a capacitance C that is charged to...Ch. 4 - A person shuffling across a dry carpet can be...Ch. 4 - Prob. 4.17PCh. 4 - Consider the circuit shown in Figure P4.18. Prior...Ch. 4 - List the steps for dc steady-state analysis of RLC...Ch. 4 - Explain why we replace capacitances with open...Ch. 4 - Solve for the steady-state values of i1, i2, and...Ch. 4 - Consider the circuit shown in Figure P4.22. What...Ch. 4 - In the circuit of Figure P4.23, the switch is in...Ch. 4 - The circuit shown in Figure P4.24 has been set up...Ch. 4 - Solve for the steady-state values of i1 , i2, i3,...Ch. 4 - The circuit shown in Figure P4.26 is operating in...Ch. 4 - Prob. 4.27PCh. 4 - Consider the circuit of Figure P4.28 in which the...Ch. 4 - For the circuit shown in Figure P4.29, the switch...Ch. 4 - Consider the circuit of Figure P4.30 in which the...Ch. 4 - Give the expression for the time constant of a...Ch. 4 - A circuit consists of switches that open or close...Ch. 4 - The circuit shown in Figure P4.33 is operating in...Ch. 4 - Consider the circuit shown in Figure P4.34. The...Ch. 4 - Repeat Problem P4.34 given iL(0)=0A .Ch. 4 - Real inductors have series resistance associated...Ch. 4 - Determine expressions for and sketch is(t) to...Ch. 4 - For the circuit shown in Figure P4.38,, find an...Ch. 4 - The circuit shown in Figure P4.39 is operating in...Ch. 4 - Consider the circuit shown in Figure P4.40. A...Ch. 4 - Due to components not shown in the figure, the...Ch. 4 - The switch shown in Figure P4.42 has been closed...Ch. 4 - Determine expressions for and sketch vR(t) to...Ch. 4 - What are the steps in solving a circuit having a...Ch. 4 - Prob. 4.45PCh. 4 - Solve for vC(t) for t > 0 in the circuit of Figure...Ch. 4 - Solve for v(t) for t > 0 in the circuit of Figure...Ch. 4 - Prob. 4.48PCh. 4 - Consider the circuit shown inFigure P4.49. The...Ch. 4 - Consider the circuit shown in Figure P4.50. The...Ch. 4 - The voltage source shown in Figure P4.51 is called...Ch. 4 - Determine the form of the particular solution for...Ch. 4 - Determine the form of the particular solution for...Ch. 4 - Prob. 4.54PCh. 4 - Prob. 4.55PCh. 4 - How can first-or second-order circuits be...Ch. 4 - Prob. 4.57PCh. 4 - Prob. 4.58PCh. 4 - Prob. 4.59PCh. 4 - Sketch a step response for a second-order system...Ch. 4 - A dc source is connected to a series RLC circuit...Ch. 4 - Repeat Problem P4.61 for R = 40 .Ch. 4 - Repeat Problem P4.61 for R = 20 .Ch. 4 - Prob. 4.64PCh. 4 - Repeat Problem P4.64 for R=50 .Ch. 4 - Repeat Problem P4.64 for R=500 .Ch. 4 - Solve for i(t) for t > 0 in the circuit of Figure...Ch. 4 - Prob. 4.68PCh. 4 - Prob. 4.69PCh. 4 - Prob. 4.70PCh. 4 - Use MATLAB to derive an expression for vc(t)in the...Ch. 4 - Prob. 4.72PCh. 4 - Consider the circuit shown in FigureP4.50 in which...Ch. 4 - Prob. 4.74PCh. 4 - Prob. 4.75PCh. 4 - Use MATLAB to solve for the mesh currents in the...Ch. 4 - The switch m the circuit shown in Figure T4.1 is...Ch. 4 - Prob. 4.2PTCh. 4 - Consider the circuit shown in Figure T4.3. Figure...Ch. 4 - Consider the circuit shown in Figure T4.4 in which...Ch. 4 - Write the MATLAB commands to obtain the solution...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- *P4.23. In the circuit of Figure P4.23, the switch is in position A for a long time prior to t=0. Find expressions for v R (t) and sketch it to scale for -2sts10 s. 20 k A B 10 knE 200 kf 30 V 10 uF Figure P4.23arrow_forwardThe switch shown in Figure P4.42 has been closed for a long time prior to t=0, then it opens at t=0 and closes again at t=1s. Find i L (t) for all t.arrow_forwardPls help need asap..show solution and discuss a bitarrow_forward
- 4. Suppose now that we include a real and ideal battery to create a RC circuit with the resistors in parallel. Imagine that the resistors in parallel go before the capacitor. The battery has an electromotive force E = 4 V. (a) What is kirchoff's law for a charging and discharging capacitor? write out both general expressions and explain what the differences are. Draw plots for both. (b) Over time, the capacitor begins to oscillate in its separation. Solve for the capacitor separation x(t) as a function of time t for a charging unknown сараcitor.arrow_forwardP4.44. What are the steps in solving a circuit having a resistance, a source, and an inductance (or capacitance)? *P4.45.) Write the differential equation for i(t) and find the complete solution for the circuit of Figure P4.45. [Hint: Try a particular solution of the form ip(t) =Ae-!] %3D 10 H 5et i(t) 5Ω Figure P4.45 P14arrow_forward4.65 The switch shown in Figure P4.65 is thrown at f = 0. Assume a DC steady-state for t 0. R₂ 1=0 V₂ Figure P4.65 mw L R₁ V₂ = 12 V R, = 31 ΚΩ L = 0.9 mH C R₂ = 100 £2 R₂-22 k2 C=0.5 μF R₂arrow_forward
- The definition of the nexus is given by the equation and the graph of the tip given in the figure. Obtain the Thevenin equivalent of the 2-tuple a-b containing this 3-nucleus.arrow_forwardP4.42. The switch shown in Figure P4.42 has been closed for a long time prior to t=0, then it opens at t=0 and closes again at t=1 s. Find i L (t) for all t. 6H 121 Figure P4.42arrow_forwardAn RC circuit includes a basic switch. In position "a", the battery, resistor and capacitor are connected in series, and the capacitor charges. In position "b", the battery is replaced with a short, and the capacitor will discharge. Two voltmeters and an ammeter have been added to the circuit. A) Enter an expression for the charge as a function of time. B) What is the maximum value of the current after the switch is closed? C) Enter an expression for the current as a function of time. Your answer must explicitly reference the maximum current, Imax, that was determined in the previous step. D) Enter an expression for the voltage measured across the resistor, VR, as a function of time. E) Enter an expression for the voltage measured across the capacitor, VC, as a function of time. F) Add an expression for the sum of the voltages across the resistor and the capacitor as a function of time, VR + VCarrow_forward
- What is a Linear Circuit? Simply we can say that the linear circuit is an electric circuit (Links to an external site.) and the parameters of this circuit are resistance, capacitance, inductance and etc are constant. Or we can say the parameters of the circuits are not changed with respect to the voltage and current is called the linear circuit. What is a Non-Linear Circuit? The non-linear circuit is also an electric circuit and the parameters of this circuit differ with respect to the current and the voltage. Or in the electric circuit, the parameters like waveforms, resistance, inductance and etc are not constant is called as Non- linear circuit. Question: Is it possible to apply superposition theorem to nonlinear circuit? If yes, why? and if no, why?arrow_forwardI need the answer as soon as possiblearrow_forwardYou have developed an idea for using a poly Si surface‐ micromachined cantilever. Initially, you designed a process flow for creating this simple structure, and the process flow is detailed in the figure below. ( cross section view and top view)There are several critical errors with this process (things that won’t work or won’t produce the result). Please find the critical errors in this process flow and, where possible, suggest alternate approaches. Do not worry about the accumulation of errors, but rather treat each step assuming that the structure up to that step could be created.This structure is actually quite simple to make. Develop a simpler process flow and associated masks to create the final structure. Be sure to show cross‐sectional and planar views of all key steps in the process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Maxwell's Equations Visualized (Divergence & Curl); Author: The Science Asylum;https://www.youtube.com/watch?v=UzW_jAJzlgI;License: Standard Youtube License