
Concept explainers
(a)
The validity of the given statement for copper by comparing the vacancy concentration when there is one vacancy in the atom positions surrounding each atom with the equilibrium vacancy.

Answer to Problem 4.18P
The statement that the FCC metals melt when there is on the average one vacancy in the atom positions surrounding each atom is wrong.
Explanation of Solution
Given:
The vacancy formation enthalpy in copper is
The melting temperature of copper is
Formula Used:
The formula to calculate the concentration of vacancies in silicon is given by,
Here,
Calculations:
The concentration of vacancies is calculated as,
Substitute
In FCC structure every atom is surrounded by
The vacancy concentration for this condition is given by,
Thus, the vacancy concentration is less at the melting temperature, when compared to the given statement.
Conclusion:
Therefore, the statement that the FCC metals melt when there is on the average one vacancy in the atom positions surrounding each atom is wrong.
(b)
The entropy of mixing the equilibrium number of vacancies into a copper crystal at the melting temperature.

Answer to Problem 4.18P
The entropy of mixing the equilibrium number of vacancies into a copper crystal at the melting temperature is
Explanation of Solution
Given:
The total number of crystal sites is equal to
Formula Used:
The concentration of copper for mixing is given by,
Here,
The entropy of mixing equilibrium vacancy concentration into copper at the melting temperature is given by,
Here,
Calculations:
The entropy of mixing the equilibrium number of vacancies into a copper crystal at the melting temperature is calculated as,
Substitute
Substitute
Conclusion:
Therefore, the entropy of mixing the equilibrium number of vacancies into a copper crystal at the melting temperature is
(c)
The change in the Gibbs free energy.

Answer to Problem 4.18P
The change in Gibbs free energy is
Explanation of Solution
Formula Used:
The change in Gibbs free energy when the equilibrium vacancy concentration forms relative to that of copper are given by,
Here,
Calculations:
The concentration of vacancies is calculated as,
Substitute
Thus, the change in Gibbs free energy when the equilibrium vacancy concentration forms relative to that of copper is
Conclusion:
Therefore, the change in Gibbs free energy is
Want to see more full solutions like this?
Chapter 4 Solutions
Materials Science And Engineering Properties
- Why is it important for construction project managers to be flexible when dealing with the many variable factors that pop up in a project?arrow_forwardWhat are some reasons for why a company would accelerate a construction project?arrow_forwardFor the design of a shallow foundation, given the following: Soil: ' = 20° c' = 52 kN/m² Unit weight, y = 15 kN/m³ Modulus of elasticity, E, = 1400 kN/m² Poisson's ratio, μs = 0.35 Foundation: L=2m B=1m Df = 1 m Calculate the ultimate bearing capacity. Use the equation: 1 - qu = c' NcFcs Fcd Fcc +qNqFqsFqdFqc + ½√BN√Fãs F√dƑxc 2 For '=20°, Nc = 14.83, N₁ = 6.4, and N₁ = 5.39. (Enter your answer to three significant figures.) qu = kN/m²arrow_forward
- A 2.0 m wide strip foundation carries a wall load of 350 kN/m in a clayey soil where y = 15 kN/m³, c' = 5.0 kN/m² and ' = 23°. The foundation depth is 1.5 m. For ' = 23°: Nc = 18.05; N₁ = 8.66; Ny = = = 8.20. Determine the factor of safety using the equation below. qu= c' NcFcs FcdFci+qNqFqsFq 1 F + gd. 'qi 2 ·BN√· FF γί Ysyd F (Enter your answer to three significant figures.) FS =arrow_forward2P -1.8 m- -1.8 m- -B Wo P -1.8 m- Carrow_forwardPart F: Progressive activity week 7 Q.F1 Pick the rural location of a project site in Victoria, and its catchment area-not bigger than 25 sqkm, and given the below information, determine the rainfall intensity for ARI 5, 50, 100 year storm event. Show all the details of the procedure. Each student must propose different length of streams and elevations. Use fig below as a sample only. Pt. E-nt 950 200 P: D-40, PC-92.0 300m 300m 000m PL.-02.0 500m HI-MAGO PLA-M 91.00 To be deemed satisfactory the solution must include: Q.F1.1.Choice of catchment location Q.F1.2. A sketch displaying length of stream and elevation Q.F1.3. Catchment's IFD obtained from the Buro of Metheorology for specified ARI Q.F1.4.Calculation of the time of concentration-this must include a detailed determination of the equivalent slope. Q.F1.5.Use must be made of the Bransby-Williams method for the determination of the equivalent slope. Q.F1.6.The graphical display of the estimation of intensities for ARI 5,50, 100…arrow_forward
- I need help finding: -The axial deflection pipe in inches. -The lateral deflection of the beam in inches -The total deflection of the beam like structure in inches ?arrow_forwardA 2.0 m wide strip foundation carries a wall load of 350 kN/m in a clayey soil where y = 17 kN/m³, c' = 5.0 kN/m² and 23°. The foundation depth is 1.5 m. For o' = 23°: Nc = 18.05; N = 8.66; N = 8.20. Determine the factor of safety using the equation below. 1 qu = c' NcFcs Fed Fci +qNqFqs FqdFqi + ½ BN F√s 1 2 (Enter your answer to three significant figures.) s Fyd Fi FS =arrow_forward1.2 m BX B 70 kN.m y = 16 kN/m³ c' = 0 6'-30° Water table Ysat 19 kN/m³ c' 0 &' = 30° A square foundation is shown in the figure above. Use FS = 6, and determine the size of the foundation. Use the Prakash and Saran theory (see equation and figures below). Suppose that F = 450 kN. Qu = BL BL[c′Nc(e)Fcs(e) + qNg(e)Fcs(e) + · 1 YBN(e) F 2 7(e) Fra(e)] (Enter your answer to two significant figures.) B: m Na(e) 60 40- 20- e/B=0 0.1 0.2 0.3 .0.4 0 0 10 20 30 40 Friction angle, ' (deg) Figure 1 Variation of Na(e) with o' Ny(e) 60 40 20 e/B=0 0.3 0.1 0.2 0.4 0 0 10 20 30 40 Friction angle, ' (deg) Figure 2 Variation of Nye) with o'arrow_forward
- K/S 46. (O المهمات الجديدة 0 المنتهية 12 المغـ ۱۱:۰۹ search ليس لديك اي مهمات ☐ ○ ☑arrow_forwardI need help setti if this problem up and solving. I keep doing something wrong.arrow_forward1.0 m (Eccentricity in one direction only)=0.15 m Call 1.5 m x 1.5m Centerline An eccentrically loaded foundation is shown in the figure above. Use FS of 4 and determine the maximum allowable load that the foundation can carry if y = 18 kN/m³ and ' = 35°. Use Meyerhof's effective area method. For '=35°, N = 33.30 and Ny = 48.03. (Enter your answer to three significant figures.) Qall = kNarrow_forward
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
