Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 22CQ
To determine
Whether a single crystal gas-turbine blade or a polycrystal turbine blade should have a higher thermal conductivity.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Which material has a higher linear coefficient of thermal expansion?
A Teflon
B Titanium
) Medium-carbon steel
D Soda lime glass
An aluminum pipe has a length of 54 m at a temperature of 10°C. An adjacent steel pipe at the same temperature is 8 mm longer. At
what temperature will the aluminum pipe be 24 mm longer than the steel pipe? Assume that the coefficient of thermal expansion for
the aluminum is 22.5x10-6/°C and that the coefficient of thermal expansion for the steel is 12.5×10-6/°C.
An aluminum pipe has a length of 69 m at a temperature of 8°C. An adjacent steel pipe at the same temperature is 5 mm longer. At what temperature will the aluminum pipe be 15 mm longer than the steel pipe? Assume that the coefficient of thermal expansion for the aluminum is 22.5×10-6/°C and that the coefficient of thermal expansion for the steel is 12.5×10-6/°C.
Chapter 4 Solutions
Materials Science And Engineering Properties
Ch. 4 - Prob. 1CQCh. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Prob. 4CQCh. 4 - Prob. 5CQCh. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Prob. 9CQCh. 4 - Prob. 10CQ
Ch. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Prob. 14CQCh. 4 - Prob. 15CQCh. 4 - Prob. 16CQCh. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - Prob. 20CQCh. 4 - Prob. 21CQCh. 4 - Prob. 22CQCh. 4 - Prob. 23CQCh. 4 - Prob. 24CQCh. 4 - Prob. 25CQCh. 4 - Prob. 26CQCh. 4 - Prob. 27CQCh. 4 - Prob. 28CQCh. 4 - Prob. 29CQCh. 4 - Prob. 30CQCh. 4 - Prob. 31CQCh. 4 - Prob. 32CQCh. 4 - Prob. 33CQCh. 4 - Prob. 34CQCh. 4 - Prob. 35CQCh. 4 - Prob. 36CQCh. 4 - Prob. 37CQCh. 4 - Prob. 38CQCh. 4 - Prob. 39CQCh. 4 - Prob. 40CQCh. 4 - Prob. 41CQCh. 4 - Prob. 42CQCh. 4 - Prob. 43CQCh. 4 - Prob. 1ETSQCh. 4 - Prob. 2ETSQCh. 4 - Prob. 3ETSQCh. 4 - Prob. 4ETSQCh. 4 - Prob. 5ETSQCh. 4 - Prob. 6ETSQCh. 4 - Prob. 7ETSQCh. 4 - Prob. 1DRQCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- An aluminum pipe has a length of 53 m at a temperature of 7°C. An adjacent steel pipe at the same temperature is 7 mm longer. At what temperature will the aluminum pipe be 21 mm longer than the steel pipe? Assume that the coefficient of thermal expansion for the aluminum is 22.5x10-6/°C and that the coefficient of thermal expansion for the steel is 12.5×106/°C. Answer: Tf = i °Carrow_forwardChoose the correct answer C3S has a faster rate of reaction accompanied by low heat generation. A-True B-Falsearrow_forwardAn aluminum pipe has a length of 68 m at a temperature of 15°C. An adjacent steel pipe at the same temperature is 10 mm longer. At what temperature will the aluminum pipe be 30 mm longer than the steel pipe? Assume that the coefficient of thermal expansion for the aluminum is 22.5×106/°C and that the coefficient of thermal expansion for the steel is 12.5x10-6/°C. Answer: °℃arrow_forward
- Which of the following is not a cause of energy loss in pipes? O Boundary friction O Changes in pipe diameter or geometry O The presence of control valves or fittings O Pipe temperaturearrow_forwardAn aluminum pipe with a length of 60 m at a temperature of 10°C rests freely on the ground. An adjacent steel pipe at the same temperature is 5 mm longer than the aluminum pipe. (a) At what temperature (degrees Celsius) will the aluminum pipe be 15 mm longer than the steel pipe? (Assume that the coefficients of thermal expansion of aluminum and steel are ca=23x10-6/°C and as=12x10-6/°C, respectively.) (b) What is the axial stress developed in the aluminum pipe when the temperature was increased? Aluminun Steel Figure No. 1 5 mmarrow_forwardExplainarrow_forward
- An aluminum pipe with a length of 60 m at a temperature of 10°C rests freely on the ground. An adjacent steel pipe at the same temperature is 5 mm longer than the aluminum pipe. (a) At what temperature (degrees Celsius) will the aluminum pipe be 15 mm longer than the steel pipe? (Assume that the coefficients of thermal expansion of aluminum and steel are a=23x10-6/°C and as-12x10-6/ c, respectively.) (b) What is the axial stress developed in the aluminum pipe when the temperature was increased? 5 mm Aluminun Steel Figure No. 1arrow_forwardGive me right solution with clear calculationsarrow_forward۹:1 ص السبت ۲۷ آذار Lectures 6-7 Ceramics 2020-21.pdf USED SUSOURCE Senior Lecture - Department of Materials Eng. - College of Engineering - University of Qadisiyah EUSOURCE Here Qfr is the energy required for the formation of each Frenkel defect, and N is the total number of lattice sites. (Also, as in previous discussions, k and T represent Boltzmann's constant and the absolute temperature, respectively.) The factor 2 is present in the denominator of the exponential because two defects (a missing cation and an interstitial cation) are associated with each Frenkel defect. Similarly, for Schottky defects, in an AX-type compound, the equilibrium number (Ns) is a function of temperature as N, = N exp Qs ... (2) Where Qs represents the Schottky defect energy of formation. Example 1 Calculate the number of Schottky defects per cubic meter in potassium chloride at 500 °C The energy required to form each Schottky defect is 2.6 eV, while the density for KCI (at 500 °C) is 1.955 g/cm³. Atomic…arrow_forward
- ASK YOUR TEACHER PRACTICE ANOTHER Thin strips of copper and brass of equal length are used to construct a bimetallic strip. When the strip is heated, due to the difference in the coefficient of linear expansion of the two metals, the brass strip will have a greater increase in length than the copper strip, causing them to bend into an arc with the brass on the outside of the curve. When the temperature of the bimetallic strip increases by 25.0°C, the angle subtended by the two ends of the curved strip is 30.3° and the difference in the radius of curvature of the two strips is 1.55 x 103 cm. Determine the original length of the strip. The coefficients of linear expansion of copper and brass are 17 x 10-6/°C and 19 x 10-6/°C respectively. cm Savearrow_forward2. In a copper-nickel system as shown in figure, an alloy composition of 35 wt% Ni was cooled down from the temperature of 1300°C. Sketch the expected microstructures at the point a, b, c, d and e and briefly describe the development of these microstructures in the equilibrium cooling. L. L (35 Ni) 1300 L (32 Ni) a (46 Ni) a(43 Ni) L (24 Ni) d 1200 1100 20 30 40 50 Composition (wt% Ni) Temperature (°C))arrow_forward[10] In parallel branches, the current will be the same unless all the resistances are the same. True False [11] Insulators have valence electrons. * two three four None of the abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning