Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 14CQ
To determine
The name of the property to indicate the change in length of a material per degree divided by the original length.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
choose the correct answer
I need the answer as soon as possible
A 4 meter long steel plate with a rectangular cross section (10 mm x 50 mm) is resting on a
frictionless surface under the sun. The plate temperature is measured to be at 40°C. The plate is then
moved into a cold room and is left to rest on a frictionless surface. After several hours, the plate
temperature is measured to be 5°C. The steel has a modulus of elasticity equal to 200 GPa and a
coefficient of thermal expansion equal to 1.1x10-5/°C.
a. What is the length of shrinkage
b. What tension load is needed to return the length to the original value of 4 meters?
c. What is the longitudinal strain under this load?
Chapter 4 Solutions
Materials Science And Engineering Properties
Ch. 4 - Prob. 1CQCh. 4 - Prob. 2CQCh. 4 - Prob. 3CQCh. 4 - Prob. 4CQCh. 4 - Prob. 5CQCh. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Prob. 9CQCh. 4 - Prob. 10CQ
Ch. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Prob. 14CQCh. 4 - Prob. 15CQCh. 4 - Prob. 16CQCh. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - Prob. 20CQCh. 4 - Prob. 21CQCh. 4 - Prob. 22CQCh. 4 - Prob. 23CQCh. 4 - Prob. 24CQCh. 4 - Prob. 25CQCh. 4 - Prob. 26CQCh. 4 - Prob. 27CQCh. 4 - Prob. 28CQCh. 4 - Prob. 29CQCh. 4 - Prob. 30CQCh. 4 - Prob. 31CQCh. 4 - Prob. 32CQCh. 4 - Prob. 33CQCh. 4 - Prob. 34CQCh. 4 - Prob. 35CQCh. 4 - Prob. 36CQCh. 4 - Prob. 37CQCh. 4 - Prob. 38CQCh. 4 - Prob. 39CQCh. 4 - Prob. 40CQCh. 4 - Prob. 41CQCh. 4 - Prob. 42CQCh. 4 - Prob. 43CQCh. 4 - Prob. 1ETSQCh. 4 - Prob. 2ETSQCh. 4 - Prob. 3ETSQCh. 4 - Prob. 4ETSQCh. 4 - Prob. 5ETSQCh. 4 - Prob. 6ETSQCh. 4 - Prob. 7ETSQCh. 4 - Prob. 1DRQCh. 4 - Prob. 4.1PCh. 4 - Prob. 4.2PCh. 4 - Prob. 4.3PCh. 4 - Prob. 4.4PCh. 4 - Prob. 4.5PCh. 4 - Prob. 4.6PCh. 4 - Prob. 4.7PCh. 4 - Prob. 4.8PCh. 4 - Prob. 4.9PCh. 4 - Prob. 4.10PCh. 4 - Prob. 4.11PCh. 4 - Prob. 4.12PCh. 4 - Prob. 4.13PCh. 4 - Prob. 4.14PCh. 4 - Prob. 4.15PCh. 4 - Prob. 4.16PCh. 4 - Prob. 4.17PCh. 4 - Prob. 4.18PCh. 4 - Prob. 4.19PCh. 4 - Prob. 4.20PCh. 4 - Prob. 4.21PCh. 4 - Prob. 4.22PCh. 4 - Prob. 4.23PCh. 4 - Prob. 4.24PCh. 4 - Prob. 4.25P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Environmental temperature has different influences on metals conductivity. Which one of the following statements is the most accurate? a. Copper conductivity increases significantly with the increase in temperature b. Electrical resistance of zinc increases at lower temperatures c. Electrical resistance of Iron increases dramatically at higher temperatures d. Electrical conductivity of aluminium increases dramatically at higher temperaturesarrow_forwardThe reciprocal of density isarrow_forwardThe band in the figure below is stainless steel (coefficient of linear expansion = 17.3 ✕ 10−6°C−1; Young's modulus = 18 ✕ 1010 N/m2). It is essentially circular with an initial mean radius of 5.4 mm, a height of 4.4 mm, and a thickness of 0.51 mm. If the band just fits snugly over the tooth when heated to a temperature of 81°C, what is the tension in the band when it cools to a temperature of 37°C?arrow_forward
- 3. An aluminum material element experiences a state of plane stress with the magnitudes and directions of the stress components given in the figure. Please calculate the change in volume per unit volume this material element would experience when subjected to the stress state given in the image below and a temperature increase of 80°C. (Note that the dotted horizontal line and 15 degree angle are irrelevant to this problem). Aluminum Properties: Thermal Coefficient of Expansion = 24 x 10-6 mm/mm/°C, Elastic Modulus = 69 GPa, Poisson Ratio = 0.35 250 MPa 60 MPa 15° 150 MPaarrow_forwardA square high-density polyethylene [a = 158 × 10-6/°C] plate has a width of 295 mm. A 177 mm diameter circular hole is located at the center of the plate. If the temperature of the plate increases by 45°C, determine: (a) the change in width of the plate. (b) the change in diameter of the hole. Answer: (a) Aw= (b) Ad = i i mm mmarrow_forwardHelp me pleasearrow_forward
- SHOW SOLUTION AND DRAW THE ILLUSTRATIONarrow_forwardA 4-meter-long steel plate with a rectangular cross section (10×50) mm is resting on a frictionless surface under the sun. The plate temperature is measured to be at 40°C. The plate is then moved into a cold room and is left to rest on a frictionless surface. After several hours, the plate temperature is measured to be at 5°C. The steel has a modulus of elasticity equal to 200,000 MPa and a coefficient of thermal expansion equal to 1.1×10-5m/m/°C. a. What is the length of shrinkage? b. What tension load is needed to return the length to the original value of 4 meters?arrow_forwardGiven poisson ratio is 0.4arrow_forward
- If the temperature of the liquid and gas increases by the same amount, what effect does this have on the viscosity for each of them?arrow_forwardA 4-m-long steel plate with a rectangular cross section (10 mm * 50 mm) is resting on a frictionless surface under the sun. The plate temperature is measured to be at 40°C. The plate is then moved into a cold room and is left to rest on a frictionless surface. After several hours, the plate temperature is measured to be at 5°C. The steel has a modulus of elasticity equal to 200,000 MPa and a coefficient of thermal expansion equal to 1.1 * 10-5m/m/°C.a. What is the length of shrinkage?b. What tension load is needed to return the length to the original value of 4 meters?c. What is the longitudinal strain under this load?arrow_forwardProblem # 1: The two rods as shown in the figure are attached to each other and the aluminum rod is fixed at the wall. The rods are initially unstressed and then a 20, 000 lb horizontal force is applied to the end of the brass rod as shown. Additionally, the rods experience a temperature increase of 80 °F. Use Linear coefficient of Expansion: Aluminum 13 x 10-6/°F Brass = 11 x 10-6/°F Young's Modulus: EAluminum = 10 x 106 lb/in2; EBrass = 15 x 106 lb/in² Determine; a) the final stress that develops in the aluminum rod, b) the total displacement of point C. Aluminum 10 ft B Aal- 2in² Brass 6 ft C 2 1in² Abr F = 20,000 lbarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning