(a)
Interpretation:
The name of given compound is to be written.
Concept introduction:
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion.
(a)
Answer to Problem 32A
Gold (III) bromide
Explanation of Solution
Gold has more than one oxidation state. So, binary compound is of type −II.
Rules for naming these compounds:
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
In the formula,
(b)
Interpretation:
The name of given compound is to be written.
Concept introduction:
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion.
(b)
Answer to Problem 32A
Cobalt (III) cyanide
Explanation of Solution
Cobalt has more than one oxidation state. So, binary compound is of type −II.
Rules for naming these compounds:
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
In the formula,
(c)
Interpretation:
The name of given compound is to be written.
Concept introduction:
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion.
(c)
Answer to Problem 32A
Magnesium hydrogen phosphate
Explanation of Solution
Magnesium has one oxidation state. So, binary compound is of type −I. it is combined with polyatomic ion.
Rules for naming these compounds:
- Name of metal cation is written as name of element.
- Name of anion is written
- Writing these names in the same sequence gives the name of compound.
In the formula,
(d)
Interpretation:
The name of given compound is to be written.
Concept introduction:
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion.
(d)
Answer to Problem 32A
Diboron hexahydride
Explanation of Solution
The binary compound is of type −III.
Rules for naming these compounds:
Type-III:
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for first element.
In the formula,
(e)
Interpretation:
The name of given compound is to be written.
Concept introduction:
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion.
(e)
Answer to Problem 32A
Nitrogen trihydride or ammonia.
Explanation of Solution
The binary compound is of type −III.
Rules for naming these compounds:
Type-III:
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for first element.
In the formula,
(f)
Interpretation:
The name of given compound is to be written.
Concept introduction:
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion.
(f)
Answer to Problem 32A
Silver sulphate
Explanation of Solution
Silver has one oxidation state. So, binary compound is of type −I. it is combined with polyatomic ion sulphate.
Rules for naming these compounds:
- Name of metal cation is written as name of element.
- Name of anion is written
- Writing these names in the same sequence gives the name of compound.
In the formula,
(g)
Interpretation:
The name of given compound is to be written.
Concept introduction:
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion.
(g)
Answer to Problem 32A
Berrylium hydroxide
Explanation of Solution
Berrylium has one oxidation state. So, binary compound is of type −I. it is combined with hydroxide ion.
Rules for naming these compounds:
- Name of metal cation is written as name of element.
- Name of anion is written
- Writing these names in the same sequence gives the name of compound.
In the formula,
Chapter 4 Solutions
World of Chemistry
- 7:35 < Dji Question 19 of 22 5G 50% Submit What is the pH of a buffer made from 0.350 mol of HBrO (Ka = 2.5 × 10-9) and 0.120 mol of KBRO in 2.0 L of solution? | 1 2 3 ☑ 4 5 6 C 7 8 ☐ 9 +/- Tap here for additional resources ||| 0 ×10 Гarrow_forwardaw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. B C Br HO O Substitution will not occur at a significant rate. Explanation Check + Х Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibarrow_forwardComplete the following reactions with the necessary reagents to complete the shown transformation. Example: 1. 2. ? 3. 018 Br OH Answer: H₂O, H2SO4, HgSO4arrow_forward
- 7:34 • < Question 18 of 22 5G 50% Submit What is the pH of a buffer made from 0.220 mol of HCNO (Ka = 3.5 × 10-4) and 0.410 mol of NaCNO in 2.0 L of solution? 1 2 3 ☑ 4 5 6 C 7 8 | 9 +/- 0 ×10 Tap here for additional resources ||| Гarrow_forward6:46 ✔ 5G 58% < Question 7 of 22 Submit What is the primary species in solution at the halfway point in a titration of NH3 with HBr? A NH3 and H+ B NH₁+ and H+ C NH4+ D NH3 and NH4+ Tap here for additional resources |||arrow_forward6:49 Dji < Question 15 of 22 4G 57% Submit The pOH of a solution is 10.50. What is the OH- concentration in the solution? A 3.2 × 10-4 M B C 3.2 x 10-11 M 10.50 M D 4.2 M E 3.50 M Tap here for additional resources |||arrow_forward
- ヨ 6:49 Dji < Question 13 of 22 5G 57% Submit The pH of a solution is 2.40. What is the H+ concentration in the solution? A B 2.5 x 10-12 M 4.0 × 10-3 M C 2.40 M D 4.76 M 11.60 M Tap here for additional resources |||arrow_forwardヨ C 6:48 Di✔ < Question 12 of 22 5G 57% Submit The pH of a solution is 12.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 9.25 M 12.50 M Tap here for additional resources |||arrow_forwardヨ C 6:48 Di✔ < Question 11 of 22 5G 57% Submit The pH of a solution is 1.50. What is the H+ concentration in the solution? A 0.032 M B 3.2 × 10-13 M 1.5 M D 2.15 M 12.50 M Tap here for additional resources |||arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY