
(a)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
Type-II:
Type-III:
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(a)

Answer to Problem 29A
Explanation of Solution
Lithium chloride is a compound of metal of type-I with non-metal chlorine. Lithium ion carries +1 charge and chloride carries -1. So, to make net charge zero one ion of Lithium is joined with one chloride ion. Therefore, correct formula is
(b)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
Type-II:
Type-III:
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(b)

Answer to Problem 29A
Explanation of Solution
Cuprous carbonate is a compound of metal of type-II with polyatomic ion. Cuprous ion carries +1 charge and carbonate ion carries -2. So, to make net charge zero two ions of copper is joined with one carbonate ion. Therefore, correct formula is
(c)
Interpretation:
The formula for given compound is to be written.
Concept introduction:
An acid is a substance which give hydrogen ion or proton in solution.
(c)

Answer to Problem 29A
Explanation of Solution
The name hydrobromic acid shows acid of bromine. As bromine forms one covalent bond with hydrogen. So, the formula is
(d)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
Type-II:
Type-III:
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(d)

Answer to Problem 29A
Explanation of Solution
Calcium nitrate is a compound of metal of type-I with polyatomic ion. Calcium ion carries +2 charge and nitrate carries -1. So, to make net charge zero one ion of calcium is joined with two nitrate ions. Therefore, correct formula is
(e)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
Type-II:
Type-III:
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(e)

Answer to Problem 29A
Explanation of Solution
Sodium perchlorate is a compound of metal of type-I with polyatomic ion. Sodium ion carries +1 charge and perchlorate carries -1. So, to make net charge zero one ion of sodium is joined with one perchlorate ion (
(f)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
Type-II:
Type-III:
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(f)

Answer to Problem 29A
Explanation of Solution
Aluminium hydroxide is a compound of metal of type-I with polyatomic ion. Aluminium ion carries +3 charge and hydroxide ion carries -1. So, to make net charge zero one ion of aluminium is joined with three hydroxide ions. Therefore, correct formula is
(g)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
Type-II:
Type-III:
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(g)

Answer to Problem 29A
Explanation of Solution
Barium hydrogen carbonate is a compound of metal of type-I with polyatomic ion. Barium ion carries +2 charge and hydrogen carbonate carries -1. So, to make net charge zero one ion of barium is joined with two hydrogen carbonate ions (
(h)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
Type-II:
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
Type-III:
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(h)

Answer to Problem 29A
Explanation of Solution
Iron (II) sulfate is a compound of metal of type-II with polyatomic ion. Iron ion carries +2 charge signified by roman numeral and sulphate carries -2. So, to make net charge zero one ion of iron is joined with one sulfate ion. Therefore, correct formula is
(i)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
Type-II:
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
Type-III:
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(i)

Answer to Problem 29A
Explanation of Solution
Diboron hexachloride is a compound of non-metal with non-metal. So, applying the rules, two boron atoms are attached with six chlorine atoms. Therefore, correct formula is
(j)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
Type-II:
Type-III:
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(j)

Answer to Problem 29A
Explanation of Solution
Phosphorus pentabromide is a compound of non-metal with non-metal. So, applying the rules, phosphorus atom is attached with five bromine atoms. Therefore, correct formula is
(k)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
Type-II:
Type-III:
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(k)

Answer to Problem 29A
Explanation of Solution
Potassium sulfite is a compound of metal of type-I with polyatomic ion. Potassium ion carries +1 charge and sulpfite carries -1. So, to make net charge zero one ion of potassium is joined with one sulfite ion (
(l)
Interpretation:
The formula of given compound is to be written.
Concept introduction:
To name a compound, certain rules are followed. The given compounds are binary compounds.
Binary compounds are of three types:
- Type-I: Compound in which a metal forms ionic bond with a non-metal and the metal can form only one type of ions.
- Type-II: Compound in which a metal forms ionic bond with a non-metal and the metal can form more than one type of ions.
- Type-III: Compound in which a non-metal forms bond with a non-metal.
There is one another type of compound in which metal is bonded with a polyatomic ion
Rules for naming these compounds:
Type-I:
- Name of metal cation is written as name of element.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- Name of metal cation is written as name of element followed by charge carried by it in roman numerals in bracket.
- Name of anion is written using root name and adding ‘ide’ to it.
- Writing these names in the same sequence gives the name of compound.
- It is name by writing the name of first element as same as element.
- Second element in anionic form and prefixes are used to denote the number of atoms. Prefix mono is not used for one element.
Type-II:
Type-III:
When metal is bonded with polyatomic ion, rules are similar to ionic binary compounds.
(l)

Answer to Problem 29A
Explanation of Solution
Barium acetate is a compound of metal of type-I with polyatomic ion. Barium ion carries +2 charge and acetate carries -1. So, to make net charge zero one ion of barium is joined with two acetate ions (
Chapter 4 Solutions
World of Chemistry
- MISSED THIS? Read Section 19.9 (Pages 878-881); Watch IWE 19.10 Consider the following reaction: CH3OH(g) CO(g) + 2H2(g) (Note that AG,CH3OH(g) = -162.3 kJ/mol and AG,co(g)=-137.2 kJ/mol.) Part A Calculate AG for this reaction at 25 °C under the following conditions: PCH₂OH Pco PH2 0.815 atm = 0.140 atm 0.170 atm Express your answer in kilojoules to three significant figures. Ο ΑΣΦ AG = -150 Submit Previous Answers Request Answer □? kJ × Incorrect; Try Again; 2 attempts remaining Calculate the free energy change under nonstandard conditions (AGrxn) by using the following relationship: AGrxn = AGrxn + RTInQ, AGxn+RTInQ, where AGxn is the standard free energy change, R is the ideal gas constant, T is the temperature in kelvins, a is the reaction quotient. Provide Feedback Next >arrow_forwardIdentify and provide a brief explanation of Gas Chromatography (GC) within the context of chemical analysis of food. Incorporate the specific application name, provide a concise overview of sample preparation methods, outline instrumental parameters and conditions ultilized, and summarise the outcomes and findings achieved through this analytical approach.arrow_forwardIdentify and provide a concise explanation of the concept of signal-to-noise ratio (SNR) in the context of chemical analysis. Provide specific examples.arrow_forward
- Identify and provide a concise explanation of a specific analytical instrument capable of detecting and quantifying trace compounds in food samples. Emphasise the instrumental capabilities relevant to trace compound analysis in the nominated food. Include the specific application name (eg: identification and quantification of mercury in salmon), outline a brief description of sample preparation procedures, and provide a summary of the obtained results from the analytical process.arrow_forwardIdentify and provide an explanation of what 'Seperation Science' is. Also describe its importance with the respect to the chemical analysis of food. Provide specific examples.arrow_forward5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn. H3C CH3arrow_forward
- State the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardState the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.arrow_forwardProvide the semi-developed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forward
- Given a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forwardAn orange laser has a wavelength of 610 nm. What is the energy of this light?arrow_forwardThe molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues: Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550. Predict the molar absorptivity of transferrin. Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet. Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





