DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 38, Problem 22RQ
Why is laser-beam welding an attractive process for producing tailored blanks for sheet metal forming? For use on small electronic components?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
in this scenario, when it comes to matrix iterations it states this system is assumed out of phase. why is this?
Q1. A curved beam of a circular cross section of diameter "d" is fixed at one end and
subjected to a concentrated load P at the free end (Fig. 1). Calculate stresses at points
A and C. Given: P = 800 N, d = 30 mm, a 25 mm, and b = 15 mm.
Fig.1
P
b
B
(10 Marks)
You are working as an engineer in a bearing systems design company. The flow of
lubricant inside a hydrodynamic bearing (p = 0.001 kg m-1 s-1) can be approximated
as a parallel, steady, two-dimensional, incompressible flow between two parallel plates.
The top plate, representing the moving part of the bearing, travels at a constant speed,
U, while the bottom plate remains stationary (Figure Q1). The plates are separated by
a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By
applying the above approximations to the Navier-Stokes equations and assuming that
end effects can be neglected, the horizontal velocity profile can be shown to be
y = +h
I
2h = 1 cm
x1
y = -h
u(y)
1 dP
2μ dx
-y² + Ay + B
moving plate
stationary plate
U
2
I2
L = 10 cm
Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm,
into the page.
Chapter 38 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 38 - What are some joining conditions where welding...Ch. 38 - What are some of the lower-temperature methods of...Ch. 38 - In what ways is a thermit weld similar to the...Ch. 38 - What is the source of the welding heat in thermit...Ch. 38 - For what types of applications might thermit...Ch. 38 - What is the source of the welding heat in...Ch. 38 - What are some of the various functions of the slag...Ch. 38 - Electroslag welding would be most attractive for...Ch. 38 - What is the source of heat in electron-beam...Ch. 38 - Why is a high vacuum required in the electron-beam...
Ch. 38 - What types of production limitations are imposed...Ch. 38 - What are the major assets and negative features of...Ch. 38 - What are some of the attractive features of...Ch. 38 - What is unique about the fusion zone geometry of...Ch. 38 - Describe the weld pool geometry and size of the...Ch. 38 - What is an autogenous weld?Ch. 38 - What might be necessary to permit the laser...Ch. 38 - What are some of the Ways in which laser-beam...Ch. 38 - What are the three common types of industrial...Ch. 38 - Which type of laser light can be transmitted...Ch. 38 - What are some of the attractive features of a...Ch. 38 - Why is laser-beam welding an attractive process...Ch. 38 - What are the attractive properties of hybrid...Ch. 38 - Prob. 24RQCh. 38 - What is the function of the assist gas in...Ch. 38 - What is the difference between exothermic cutting...Ch. 38 - Which type of laser is preferred for cutting...Ch. 38 - Prob. 28RQCh. 38 - Prob. 29RQCh. 38 - What features have made lasers a common means of...Ch. 38 - What are some of the attractive features of laser...Ch. 38 - What are some common objectives of surfacing...Ch. 38 - What types of materials are applied by surfacing...Ch. 38 - Prob. 34RQCh. 38 - What is the benefit of high-velocity oxyfuel...Ch. 38 - What are some of the arc or plasma techniques that...Ch. 38 - How is thermal spraying similar to surfacing? How...Ch. 38 - Prob. 38RQCh. 38 - Prob. 39RQCh. 38 - Provide a reasonable definition of brazing?Ch. 38 - What are some key differences between brazing and...Ch. 38 - What kinds of materials or combinations can be...Ch. 38 - What advantages can be gained by the lower...Ch. 38 - Why do brazed joints have an enhanced...Ch. 38 - What is the most important factor influencing the...Ch. 38 - How does capillary action relate to joint...Ch. 38 - Why is it necessary to adjust the initial...Ch. 38 - What is wettability? Fluidity? How do each relate...Ch. 38 - What are the two most common types of brazed...Ch. 38 - How do the butt-lap and scarf joint configurations...Ch. 38 - What are some important considerations when...Ch. 38 - What are some of the most commonly used brazing...Ch. 38 - Why are eutectic alloys attractive as brazing...Ch. 38 - What special measures should be taken when brazing...Ch. 38 - What are the three primary functions of a brazing...Ch. 38 - Why is it important to preclean brazing surfaces...Ch. 38 - How might braze metal be preloaded into joints?Ch. 38 - What is the purpose of brazing jigs and fixtures?Ch. 38 - 59- What are some factors to consider when...Ch. 38 - What are the advantages and disadvantages of torch...Ch. 38 - What is the primary attraction of furnace-brazing...Ch. 38 - Why might reducing atmospheres or a vacuum be...Ch. 38 - What are some of the attractive features of...Ch. 38 - Why is dip brazing usually restricted to use with...Ch. 38 - What are some of the attractive features of...Ch. 38 - Why is flux removal a necessary part of many...Ch. 38 - What benefits can be achieved through fluxless...Ch. 38 - How does braze welding differ from traditional...Ch. 38 - What is the primary difference between brazing and...Ch. 38 - What are the six steps of a soldering operation?Ch. 38 - Why is soldering unattractive if a high-strength...Ch. 38 - For many years, the most common solders have been...Ch. 38 - What is driving the conversion to lead-free...Ch. 38 - What are some of the difficulties encountered when...Ch. 38 - What are the two basic families of soldering flux?Ch. 38 - What are some of the more common heat sources for...Ch. 38 - Why is wave soldering attractive for making the...Ch. 38 - Describe the vapor-phase soldering process.Ch. 38 - A common problem with brazed or soldered joints is...Ch. 38 - When molten metal deposition is applied to a...Ch. 38 - Prob. 3P
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A nozzle at A discharges water with an initial velocity of 36 ft/s at an angle with the horizontal. Determine ...
Vector Mechanics For Engineers
What is the difference between machine language code and byte code?
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Write a program that reads a 4-bit binary number from the keyboard as a string and then converts it into decima...
Java: An Introduction to Problem Solving and Programming (8th Edition)
Ship, CruiseShip, and CargoShip Classes Design a Ship class that the following members: A field for the name of...
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
When displaying a Java applet, the browser invokes the _____ to interpret the bytecode into the appropriate mac...
Web Development and Design Foundations with HTML5 (8th Edition)
What is a ToolTip?
Starting Out With Visual Basic (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 1 You are working as an engineer in a bearing systems design company. The flow of lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated as a parallel, steady, two-dimensional, incompressible flow between two parallel plates. The top plate, representing the moving part of the bearing, travels at a constant speed, U, while the bottom plate remains stationary (Figure Q1). The plates are separated by a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By applying the above approximations to the Navier-Stokes equations and assuming that end effects can be neglected, the horizontal velocity profile can be shown to be 1 dP u(y) = 2μ dx -y² + Ay + B y= +h Ꮖ 2h=1 cm 1 x1 y = −h moving plate stationary plate 2 X2 L = 10 cm Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm, into the page. (a) By considering the appropriate boundary conditions, show that the constants take the following forms: U U 1 dP A =…arrow_forwardQuestion 2 You are an engineer working in the propulsion team for a supersonic civil transport aircraft driven by a turbojet engine, where you have oversight of the design for the engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of 14,000 m. For all parts of the question, you can assume that the flow path of air through the engine has a circular cross section. (a) ← intake normal shock 472 m/s A B (b) 50 m/s H 472 m/s B engine altitude: 14,000 m exhaust nozzle E F exit to atmosphere diameter: DE = 0.30 m E F diameter: DF = 0.66 m Figure Q2: Propulsion system for a supersonic aircraft. a) When the aircraft is at an altitude of 14,000 m, use the International Standard Atmosphere in the Module Data Book to state the local air pressure and tempera- ture. Thus show that the aircraft speed…arrow_forwardيكا - put 96** I need a detailed drawing with explanation or in wake, and the top edge of im below the free surface of the water. Determine the hydrothed if hydrostatic on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. =--20125 7357 750 X 2.01arrow_forward
- You are working as an engineer in a bearing systems design company. The flow of lubricant inside a hydrodynamic bearing (µ = 0.001 kg m¯¹ s¯¹) can be approximated as a parallel, steady, two-dimensional, incompressible flow between two parallel plates. The top plate, representing the moving part of the bearing, travels at a constant speed, U, while the bottom plate remains stationary (Figure Q1). The plates are separated by a distance of 2h = 1 cm and are W = 20 cm wide. Their length is L = 10 cm. By applying the above approximations to the Navier-Stokes equations and assuming that end effects can be neglected, the horizontal velocity profile can be shown to be U y = +h У 2h = 1 cm 1 x1 y=-h u(y) = 1 dP 2μ dx -y² + Ay + B moving plate - U stationary plate 2 I2 L = 10 cm Figure Q1: Flow in a hydrodynamic bearing. The plates extend a width, W = 20 cm, into the page. (a) By considering the appropriate boundary conditions, show that the constants take the following forms: A = U 2h U 1 dP…arrow_forwardQuestion 2 You are an engineer working in the propulsion team for a supersonic civil transport aircraft driven by a turbojet engine, where you have oversight of the design for the engine intake and the exhaust nozzle, indicated in Figure Q2a. The turbojet engine can operate when provided with air flow in the Mach number range, 0.60 to 0.80. You are asked to analyse a condition where the aircraft is flying at 472 m/s at an altitude of 14,000 m. For all parts of the question, you can assume that the flow path of air through the engine has a circular cross section. (a) normal shock 472 m/s A B (b) intake engine altitude: 14,000 m D exhaust nozzle→ exit to atmosphere 472 m/s 50 m/s B diameter: DE = 0.30 m EX diameter: DF = 0.66 m Figure Q2: Propulsion system for a supersonic aircraft. F a) When the aircraft is at an altitude of 14,000 m, use the International Standard Atmosphere in the Module Data Book to state the local air pressure and tempera- ture. Thus show that the aircraft speed of…arrow_forwardgiven below: A rectangular wing with wing twist yields the spanwise circulation distribution kbV1 roy) = kbv. (2) where k is a constant, b is the span length and V. is the free-stream velocity. The wing has an aspect ratio of 4. For all wing sections, the lift curve slope (ag) is 2 and the zero-lift angle of attack (a=0) is 0. a. Derive expressions for the downwash (w) and induced angle of attack a distributions along the span. b. Derive an expression for the induced drag coefficient. c. Calculate the span efficiency factor. d. Calculate the value of k if the wing has a washout and the difference between the geometric angles of attack of the root (y = 0) and the tip (y = tb/2) is: a(y = 0) a(y = ±b/2) = /18 Hint: Use the coordinate transformation y = cos (0)arrow_forward
- ۳/۱ العنوان O не شكا +91x PU + 96852 A heavy car plunges into a lake during an accident and lands at the bottom of the lake on its wheels as shown in figure. The door is 1.2 m high and I m wide, and the top edge of Deine the hadrostatic force on the Plot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm. = -20125 750 x2.01arrow_forwardPlot the displacement diagram for a cam with roller follower of diameter 10 mm. The required motion is as follows; 1- Rising 60 mm in 135° with uniform acceleration and retardation motion. 2- Dwell 90° 3- Falling 60 mm for 135° with Uniform acceleration-retardation motion. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.arrow_forwardQ1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 marrow_forward
- I need handwritten solution with sketches for eacharrow_forwardGiven answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward(b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY