
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 38, Problem 69RQ
What is the primary difference between brazing and soldering?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1 Revolute four-bar mechanism, AB=60mm, BC=130mm, CD=140mm, AD=200mm,
CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED.
The roof truss shown carries roof loads, where P = 10 kN. The truss is consisting of circular arcs top andbottom chords with radii R + h and R, respectively.Given: h = 1.2 m, R = 10 m, s = 2 m.Allowable member stresses:Tension = 250 MPaCompression = 180 MPa1. If member KL has square section, determine the minimum dimension (mm).2. If member KL has circular section, determine the minimum diameter (mm).3. If member GH has circular section, determine the minimum diameter (mm).ANSWERS: (1) 31.73 mm; (2) 35.81 mm; (3) 18.49 mm
CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED.
The cantilevered spandrel beam shown whose depth tapers from d1 to d2, has a constant width of 120mm. It carries a triangularly distributed end reaction.Given: d1 = 600 mm, d2 = 120 mm, L = 1 m, w = 100 kN/m1. Calculate the maximum flexural stress at the support, in kN-m.2. Determine the distance (m), from the free end, of the section with maximum flexural stress.3. Determine the maximum flexural stress in the beam, in MPa.ANSWERS: (1) 4.630 MPa; (2) 905.8688 m; (3) 4.65 MPa
Chapter 38 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 38 - What are some joining conditions where welding...Ch. 38 - What are some of the lower-temperature methods of...Ch. 38 - In what ways is a thermit weld similar to the...Ch. 38 - What is the source of the welding heat in thermit...Ch. 38 - For what types of applications might thermit...Ch. 38 - What is the source of the welding heat in...Ch. 38 - What are some of the various functions of the slag...Ch. 38 - Electroslag welding would be most attractive for...Ch. 38 - What is the source of heat in electron-beam...Ch. 38 - Why is a high vacuum required in the electron-beam...
Ch. 38 - What types of production limitations are imposed...Ch. 38 - What are the major assets and negative features of...Ch. 38 - What are some of the attractive features of...Ch. 38 - What is unique about the fusion zone geometry of...Ch. 38 - Describe the weld pool geometry and size of the...Ch. 38 - What is an autogenous weld?Ch. 38 - What might be necessary to permit the laser...Ch. 38 - What are some of the Ways in which laser-beam...Ch. 38 - What are the three common types of industrial...Ch. 38 - Which type of laser light can be transmitted...Ch. 38 - What are some of the attractive features of a...Ch. 38 - Why is laser-beam welding an attractive process...Ch. 38 - What are the attractive properties of hybrid...Ch. 38 - Prob. 24RQCh. 38 - What is the function of the assist gas in...Ch. 38 - What is the difference between exothermic cutting...Ch. 38 - Which type of laser is preferred for cutting...Ch. 38 - Prob. 28RQCh. 38 - Prob. 29RQCh. 38 - What features have made lasers a common means of...Ch. 38 - What are some of the attractive features of laser...Ch. 38 - What are some common objectives of surfacing...Ch. 38 - What types of materials are applied by surfacing...Ch. 38 - Prob. 34RQCh. 38 - What is the benefit of high-velocity oxyfuel...Ch. 38 - What are some of the arc or plasma techniques that...Ch. 38 - How is thermal spraying similar to surfacing? How...Ch. 38 - Prob. 38RQCh. 38 - Prob. 39RQCh. 38 - Provide a reasonable definition of brazing?Ch. 38 - What are some key differences between brazing and...Ch. 38 - What kinds of materials or combinations can be...Ch. 38 - What advantages can be gained by the lower...Ch. 38 - Why do brazed joints have an enhanced...Ch. 38 - What is the most important factor influencing the...Ch. 38 - How does capillary action relate to joint...Ch. 38 - Why is it necessary to adjust the initial...Ch. 38 - What is wettability? Fluidity? How do each relate...Ch. 38 - What are the two most common types of brazed...Ch. 38 - How do the butt-lap and scarf joint configurations...Ch. 38 - What are some important considerations when...Ch. 38 - What are some of the most commonly used brazing...Ch. 38 - Why are eutectic alloys attractive as brazing...Ch. 38 - What special measures should be taken when brazing...Ch. 38 - What are the three primary functions of a brazing...Ch. 38 - Why is it important to preclean brazing surfaces...Ch. 38 - How might braze metal be preloaded into joints?Ch. 38 - What is the purpose of brazing jigs and fixtures?Ch. 38 - 59- What are some factors to consider when...Ch. 38 - What are the advantages and disadvantages of torch...Ch. 38 - What is the primary attraction of furnace-brazing...Ch. 38 - Why might reducing atmospheres or a vacuum be...Ch. 38 - What are some of the attractive features of...Ch. 38 - Why is dip brazing usually restricted to use with...Ch. 38 - What are some of the attractive features of...Ch. 38 - Why is flux removal a necessary part of many...Ch. 38 - What benefits can be achieved through fluxless...Ch. 38 - How does braze welding differ from traditional...Ch. 38 - What is the primary difference between brazing and...Ch. 38 - What are the six steps of a soldering operation?Ch. 38 - Why is soldering unattractive if a high-strength...Ch. 38 - For many years, the most common solders have been...Ch. 38 - What is driving the conversion to lead-free...Ch. 38 - What are some of the difficulties encountered when...Ch. 38 - What are the two basic families of soldering flux?Ch. 38 - What are some of the more common heat sources for...Ch. 38 - Why is wave soldering attractive for making the...Ch. 38 - Describe the vapor-phase soldering process.Ch. 38 - A common problem with brazed or soldered joints is...Ch. 38 - When molten metal deposition is applied to a...Ch. 38 - Prob. 3P
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What are the six common steps needed to access databases from a typical program?
Modern Database Management
F310. Determine the tension developed in cables AB, AC, and AD.
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Summarize the following rats-nest routine with a single if-else statement: if X 5 then goto 80 X = X + 1 goto ...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
In Listing 5.12, we set the data for the object speciesOfTheMonth as follows: speciesOfTheMonth.setSpecies(Klin...
Java: An Introduction to Problem Solving and Programming (8th Edition)
Name Formatting Create an application that lets the user enter a persons name as a last name, comma, and first ...
Starting Out With Visual Basic (8th Edition)
Determine the slope and deflection of end A of the cantilevered beam. E = 200 GPa and I = 65.0(106) m4. F127
Mechanics of Materials (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- CORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. A concrete wall retains water as shown. Assume that the wall is fixed at the base. Given: H = 3 m, t = 0.5m, Concrete unit weight = 23 kN/m3Unit weight of water = 9.81 kN/m3(Hint: The pressure of water is linearly increasing from the surface to the bottom with intensity 9.81d.)1. Find the maximum compressive stress (MPa) at the base of the wall if the water reaches the top.2. If the maximum compressive stress at the base of the wall is not to exceed 0.40 MPa, what is the maximum allowable depth(m) of the water?3. If the tensile stress at the base is zero, what is the maximum allowable depth (m) of the water?ANSWERS: (1) 1.13 MPa, (2) 2.0 m, (3) 1.20 marrow_forwardCORRECT AND DETAILED HANDWRITTEN SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. A short plate is attached to the center of the shaft as shown. The bottom of the shaft is fixed to the ground.Given: a = 75 mm, h = 125 mm, D = 38 mmP1 = 24 kN, P2 = 28 kN1. Calculate the maximum torsional stress in the shaft, in MPa.2. Calculate the maximum flexural stress in the shaft, in MPa.3. Calculate the maximum horizontal shear stress in the shaft, in MPa.ANSWERS: (1) 167.07 MPa; (2) 679.77 MPa; (3) 28.22 MPaarrow_forwardA counter flow double pipe heat exchanger is being used to cool hot oil from 320°F to 285°F using cold water. The water, which flows through the inner tube, enters the heat exchanger at 70°F and leaves at 175°F. The inner tube is ¾-std type L copper. The overall heat transfer coefficient based on the outside diameter of the inner tube is 140 Btu/hr-ft2-°F. Design conditions call for a total heat transfer duty (heat transfer rate between the two fluids) of 20,000 Btu/hr. Determine the required length of this heat exchanger (ft).arrow_forward
- ! Required information A one-shell-pass and eight-tube-passes heat exchanger is used to heat glycerin (cp=0.60 Btu/lbm.°F) from 80°F to 140°F by hot water (Cp = 1.0 Btu/lbm-°F) that enters the thin-walled 0.5-in-diameter tubes at 175°F and leaves at 120°F. The total length of the tubes in the heat exchanger is 400 ft. The convection heat transfer coefficient is 4 Btu/h-ft²°F on the glycerin (shell) side and 70 Btu/h-ft²°F on the water (tube) side. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the rate of heat transfer in the heat exchanger before any fouling occurs. Correction factor F 1.0 10 0.9 0.8 R=4.0 3.0 2.0.15 1.0 0.8.0.6 0.4 0.2 0.7 0.6 R= T1-T2 12-11 0.5 12-11 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (a) One-shell pass and 2, 4, 6, etc. (any multiple of 2), tube passes P= T₁-11 The rate of heat transfer in the heat exchanger is Btu/h.arrow_forward! Required information Air at 25°C (cp=1006 J/kg.K) is to be heated to 58°C by hot oil at 80°C (cp = 2150 J/kg.K) in a cross-flow heat exchanger with air mixed and oil unmixed. The product of heat transfer surface area and the overall heat transfer coefficient is 750 W/K and the mass flow rate of air is twice that of oil. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air Oil 80°C Determine the effectiveness of the heat exchanger.arrow_forwardIn an industrial facility, a counter-flow double-pipe heat exchanger uses superheated steam at a temperature of 155°C to heat feed water at 30°C. The superheated steam experiences a temperature drop of 70°C as it exits the heat exchanger. The water to be heated flows through the heat exchanger tube of negligible thickness at a constant rate of 3.47 kg/s. The convective heat transfer coefficient on the superheated steam and water side is 850 W/m²K and 1250 W/m²K, respectively. To account for the fouling due to chemical impurities that might be present in the feed water, assume a fouling factor of 0.00015 m²-K/W for the water side. The specific heat of water is determined at an average temperature of (30 +70)°C/2 = 50°C and is taken to be J/kg.K. Cp= 4181 Water Steam What would be the required heat exchanger area in case of parallel-flow arrangement? The required heat exchanger area in case of parallel-flow arrangement is 1m².arrow_forward
- A single-pass crossflow heat exchanger is used to cool jacket water (cp = 1.0 Btu/lbm.°F) of a diesel engine from 190°F to 140°F, using air (Cp = 0.245 Btu/lbm.°F) at inlet temperature of 90°F. Both air flow and water flow are unmixed. If the water and air mass flow rates are 85500 lbm/h and 400,000 lbm/h, respectively, determine the log mean temperature difference for this heat exchanger. Assume the correction factor F to be 0.92. Air flow (unmixed) Water flow (unmixed) The log mean temperature difference of the heat exchanger is °F.arrow_forwardusing the theorem of three moments, find all the reactions and supports, I need concise calculations only. the answers are at the bottom, I need concise steps and minimal explanationsarrow_forwardIn an industrial facility, a counter-flow double-pipe heat exchanger uses superheated steam at a temperature of 155°C to heat feed water at 30°C. The superheated steam experiences a temperature drop of 70°C as it exits the heat exchanger. The water to be heated flows through the heat exchanger tube of negligible thickness at a constant rate of 3.47 kg/s. The convective heat transfer coefficient on the superheated steam and water side is 850 W/m²K and 1250 W/m²K, respectively. To account for the fouling due to chemical impurities that might be present in the feed water, assume a fouling factor of 0.00015 m² K/W for the water side. The specific heat of water is determined at an average temperature of (30+70)°C/2 = 50°C and is taken to be Cp J/kg-K. Water Steam Determine the heat exchanger area required to maintain the exit temperature of the water to a minimum of 70°C. The heat exchanger area required isarrow_forward
- Stress, ksi 160 72 150- 140 80 70 ༄ ྃ ༈ ཎྜ རྦ ༅ ཎྜ ྣཧྨ ➢ 130 120 110 100 90 2.0 2.8 3.6 4.4 5 Wire diameter, mm 6.0 6.8 2 7.6 8.4 Compression and extension springs. ASTM A227 Class II Light service Average service 0.020 0.060 0.100 0.140 0.180 0.220 0.260 0.300 0.340 0.380 0.420 0.460 0.500 Wire diameter, in Torsional stress due to initial tension, ksi 10 ४ 20 Preferred range 100 Stress, MPa 9.2 10.0 10.8 11.6 12.4 1100 1035 965 895 825 760 Severe service 690 620 550 50 150 3456789 10 11 12 13 14 15 16 Spring index, C = DJD FIGURE 18-21 Recommended torsional shear stress in an extension spring due to initial tension (Data from Associated Spring, Barnes Group, Inc.) 50 200 485 Stress, MPaarrow_forwardBolted Joint Design Bolted Frames Total Force due to door weight: P = 240 lb Number of Bolts: N = Distance to Bolt C/L: a = 4 N/A Bolt Material - Allowable shear stress of bolt material: T₂ = x Distance from Bolt centroid to bolt: x = y Distance from Bolt centroid to bolt: y = Degrees per Radian- Results y-Load on each bolt: F, = Moment resisted by bolt pattern: M = Radial distance from Bolt centroid to bolt: r = Sum squares of all radial distances: Σr² Force on each bolt to resist moment: F, - Angle for force composition: e= X-Force on each bolt to resist moment: F- y-Force on each bolt to resist moment: Fly Total y-Force on each bolt: Fy = Resultant force on bolt 1: R₁ = Required shear stress area for a bolt: A₂ = ASTM Grade A307 Steel 10,000 0 psi from Table 20-1 3.0 57.296 in degrees lb per bolt lb-in Formula FS-P/N M-Px XB r = (x² + y²)0.5 in² Σ 4r² Mr F₁ = Στ lb degrees lb lb lb Minimum Bolt Diameter: Din = Rounded up Bolt Diameter: D = 55 P. 1.5 in 2 in (3x) 1 in This bracket…arrow_forwardUniversity of Babylon Collage of Engineering/ Al-Musayab Department of Automobiles Final Examination/ Stage: 3rd Notes: Answer 4 questions only 2023-2202 Subject: Theory of vehicles Date: 2023\06\10-Saturday Time: Three Hours Course 2nd Attempt 1st Q1: A Hooke's coupling connects two shafts whose axes are inclined at 30°. The of the driven shaft? Find the maximum value of retardation or acceleration and driving shaft rotates uniformly at 600 rpm. What are the extreme angular velocities state the angle where both will occur. (12.5 Marks) Q2: Four masses, A, B, C, and D), revolve at equal radii and are equally spaced along a shaft. The mass B is 7 kg, and the radius of C and D make angles of 90° and 240°, respectively, with the radius of B. Find the magnitude of the masses A, C, and D and the angular position of A so that the system may be completely balanced. (12.5 Marks) Q3: A cam has straight worked faces that are tangential to a base circle of diameter 90 mm. The follower is a roller…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY