DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 38, Problem 66RQ
Why is flux removal a necessary part of many brazing operations?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Example
Two rotating rods are connected by slider block P. The rod attached at A rotates with a
constant clockwise angular velocity WA. For the given data, determine for the position
shown (a) the angular velocity of the rod attached at B, (b) the relative velocity of
slider block P with respect to the rod on which it slides. b = 8 in., w₁ = 6 rad/s.
Given: b = 8 in., WA = 6 rad/s CW
constant
Find: (a). WBE (b). Vp/Frame
E
60°
20°
B
Y
F1
α
В
X
F2
You and your friends are planning to move the log. The log.
needs to be moved straight in the x-axis direction and it
takes a combined force of 2.9 kN. You (F1) are able to exert
610 N at a = 32°. What magnitude (F2) and direction (B) do
you needs your friends to pull?
Your friends had to pull at:
magnitude in Newton, F2
=
direction in degrees, ẞ =
N
deg
100
As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the
spring constant at time t is k(t) = t sin + N/m. If the mass-spring system has mass m = 2 kg and a
damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is
subjected to the harmonic external force f (t) = 100 cos 3t N. Find at least the first four nonzero terms in
a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement:
• Analytically (hand calculations)
Creating Simulink Model
Plot solutions for first two, three and four non-zero terms as well as the Simulink solution on the same graph
for the first 15 sec. The graph must be fully formatted by code.
Chapter 38 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 38 - What are some joining conditions where welding...Ch. 38 - What are some of the lower-temperature methods of...Ch. 38 - In what ways is a thermit weld similar to the...Ch. 38 - What is the source of the welding heat in thermit...Ch. 38 - For what types of applications might thermit...Ch. 38 - What is the source of the welding heat in...Ch. 38 - What are some of the various functions of the slag...Ch. 38 - Electroslag welding would be most attractive for...Ch. 38 - What is the source of heat in electron-beam...Ch. 38 - Why is a high vacuum required in the electron-beam...
Ch. 38 - What types of production limitations are imposed...Ch. 38 - What are the major assets and negative features of...Ch. 38 - What are some of the attractive features of...Ch. 38 - What is unique about the fusion zone geometry of...Ch. 38 - Describe the weld pool geometry and size of the...Ch. 38 - What is an autogenous weld?Ch. 38 - What might be necessary to permit the laser...Ch. 38 - What are some of the Ways in which laser-beam...Ch. 38 - What are the three common types of industrial...Ch. 38 - Which type of laser light can be transmitted...Ch. 38 - What are some of the attractive features of a...Ch. 38 - Why is laser-beam welding an attractive process...Ch. 38 - What are the attractive properties of hybrid...Ch. 38 - Prob. 24RQCh. 38 - What is the function of the assist gas in...Ch. 38 - What is the difference between exothermic cutting...Ch. 38 - Which type of laser is preferred for cutting...Ch. 38 - Prob. 28RQCh. 38 - Prob. 29RQCh. 38 - What features have made lasers a common means of...Ch. 38 - What are some of the attractive features of laser...Ch. 38 - What are some common objectives of surfacing...Ch. 38 - What types of materials are applied by surfacing...Ch. 38 - Prob. 34RQCh. 38 - What is the benefit of high-velocity oxyfuel...Ch. 38 - What are some of the arc or plasma techniques that...Ch. 38 - How is thermal spraying similar to surfacing? How...Ch. 38 - Prob. 38RQCh. 38 - Prob. 39RQCh. 38 - Provide a reasonable definition of brazing?Ch. 38 - What are some key differences between brazing and...Ch. 38 - What kinds of materials or combinations can be...Ch. 38 - What advantages can be gained by the lower...Ch. 38 - Why do brazed joints have an enhanced...Ch. 38 - What is the most important factor influencing the...Ch. 38 - How does capillary action relate to joint...Ch. 38 - Why is it necessary to adjust the initial...Ch. 38 - What is wettability? Fluidity? How do each relate...Ch. 38 - What are the two most common types of brazed...Ch. 38 - How do the butt-lap and scarf joint configurations...Ch. 38 - What are some important considerations when...Ch. 38 - What are some of the most commonly used brazing...Ch. 38 - Why are eutectic alloys attractive as brazing...Ch. 38 - What special measures should be taken when brazing...Ch. 38 - What are the three primary functions of a brazing...Ch. 38 - Why is it important to preclean brazing surfaces...Ch. 38 - How might braze metal be preloaded into joints?Ch. 38 - What is the purpose of brazing jigs and fixtures?Ch. 38 - 59- What are some factors to consider when...Ch. 38 - What are the advantages and disadvantages of torch...Ch. 38 - What is the primary attraction of furnace-brazing...Ch. 38 - Why might reducing atmospheres or a vacuum be...Ch. 38 - What are some of the attractive features of...Ch. 38 - Why is dip brazing usually restricted to use with...Ch. 38 - What are some of the attractive features of...Ch. 38 - Why is flux removal a necessary part of many...Ch. 38 - What benefits can be achieved through fluxless...Ch. 38 - How does braze welding differ from traditional...Ch. 38 - What is the primary difference between brazing and...Ch. 38 - What are the six steps of a soldering operation?Ch. 38 - Why is soldering unattractive if a high-strength...Ch. 38 - For many years, the most common solders have been...Ch. 38 - What is driving the conversion to lead-free...Ch. 38 - What are some of the difficulties encountered when...Ch. 38 - What are the two basic families of soldering flux?Ch. 38 - What are some of the more common heat sources for...Ch. 38 - Why is wave soldering attractive for making the...Ch. 38 - Describe the vapor-phase soldering process.Ch. 38 - A common problem with brazed or soldered joints is...Ch. 38 - When molten metal deposition is applied to a...Ch. 38 - Prob. 3P
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
2D Array Operations Write a program that creates a two-dimensional array initialized with test data. Use any pr...
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
For the circuit shown, use the node-voltage method to find v1, v2, and i1.
How much power is delivered to the c...
Electric Circuits. (11th Edition)
If the 1500-lb boom AB, the 200-lb cage BCD, and the 175-lb man have centers of gravity located at points G1, G...
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
How does the typing system of PHP and JavaScript differ from that of Java?
Concepts Of Programming Languages
What Visual Basic function would you use to get the current time from the system, without the date?
Starting Out With Visual Basic (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m² = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. (y₁ = 0) www k₁ = 3 Jm₁ = 1 k2=2 www (Net change in spring length =32-31) (y₂ = 0) m₂ = 1 32 32 System in static equilibrium System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁ (t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Produce an animation of the system for all solutions for the first minute.arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forward5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal pipe for the following conditions: Fluid-propylene Pressure 8.175 bar Temperature-7°C Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³ Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³arrow_forward
- Describe the following HVAC systems. a) All-air systems b) All-water systems c) Air-water systems Graphically represent each system with a sketch.arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forwardased on the corresponding mass flow rates (and NOT the original volumetric flow rates) determine: a) The mass flow rate of the mixed air (i.e., the combination of the two flows) leaving the chamber in kg/s. b) The temperature of the mixed air leaving the chamber. Please use PyscPro software for solving this question. Notes: For part (a), you will first need to find the density or specific volume for each state (density = 1/specific volume). The units the 'v' and 'a' are intended as subscripts: · kgv = kg_v = kgv = kilogram(s) [vapour] kga = kg_a =kga = kilogram(s) [air]arrow_forward
- The answers to this question s wasn't properly given, I need expert handwritten solutionsarrow_forwardI need expert handwritten solutions to this onlyarrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min B y(t) 100 L y(0) = 20 kg 2 L/min 1 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t > 0: Analytically (hand calculations)arrow_forward
- Two springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)arrow_forward100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f(t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: Analytically (hand calculations)arrow_forwardthis is answer to a vibrations question. in the last part it states an assumption of x2, im not sure where this assumption comes from. an answer would be greatly appreciatedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Metal Joining Process-Welding, Brazing and Soldering; Author: Toc H Kochi;https://www.youtube.com/watch?v=PPT5_fDSzGY;License: Standard YouTube License, CC-BY