Concept explainers
The professor returns the apparatus to the original setting. She then adjusts the speakers again. All of the students who had heard nothing originally now hear a loud tone, while you and the others who had originally heard the loud tone hear nothing. What did the professor do? (a) She turned off the oscillator. (b) She turned down the volume of the speakers. (c) She changed the phase relationship of the speakers. (d) She disconnected one speaker.
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
Tutorials in Introductory Physics
Applied Physics (11th Edition)
Essential University Physics (3rd Edition)
Conceptual Integrated Science
Conceptual Physics (12th Edition)
College Physics: A Strategic Approach (3rd Edition)
- 6. We have a signal x(n) = xa(t)]1=nT; t=nT1 where T1 7 msec, and we wish to convert x(n) to y(m) such that y(m) = xa(t)]t=mT2 with T, = 5 msec. Develop a system to do this, being sure to specify the frequency re- sponse of any filters that are used (ideal responses are okay). Are there any restrictions on xa(t) that should be imposed so that this is possible?arrow_forwardThe lightbulb as shown is 50 cm from a mirror. It emits 1.5 W of visible light. A small barrier blocks the direct rays of light from the bulb from reaching a sensor 70 cm to the right, but not the reflected rays. What is thelight intensity at the sensor?arrow_forwardA central loudspeaker cluster provides sufficient coverage to the auditorium where it is installed except under the balcony. A secondary loudspeaker is installed under the balcony. A listener in the second to last row is 65 feet from the main cluster and 7 feet from the secondary cluster. For this listener location, what is the ideal electronic signal delay for the secondary loudspeaker? Is the amplified sound arriving within 25 ms of the direct sound?arrow_forward
- An interference filter has a dielectric layer (refractive index 1.34) with a thickness of 0.805 μm. If the determination is to be based on the first-order interference, calculate the wavelength (nm) can be transmitted?arrow_forwardThe figure shows a loud speaker A and point C where a listener is. AC= 1m and the angle is 40 degrees. B is somewhere to the left of A. Both speakers are playing out of phase a 65Hz tone. What is the second closest distance to speaker A that speaker B can be located so that the listener hears no sound?arrow_forwardFigure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d = 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive signals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180 phase shift occurs upon reflection. Determine the longest wavelengths that interfere (a) constructively and (b) destructively. Figure P36.35 Problems 35 and 36.arrow_forward
- Figure 24.26 shows the interference pattern of two radio antennas broadcasting the same signal. Explain how this is analogous to the interference pattern for sound produced by two speakers. Could this he used to make a directional antenna system that broadcasts preferentially in certain directions? Explain. Figure 24.26 An overhead view of two radio broadcast antennas sending the same signal, and the interference pattern they produce.arrow_forwardTwo separate coherent sources with distance produce identical sound waves of wavelength 2.0 [m] that are in phase. Source 1 is at the (0, 0) and Source 2 is at (6.0 [m], 0). If an observer stands at (6.0 [m], 8.0 [m]) in front of the sources, what will be the path difference and how would the sound waves interfere at that point?arrow_forwardThe phase shift between ordinary and extraordinary waves in the plastic and thus the degree of transmission is dependent on both the birefringence An (= no-ne), and the air wavelength 20: Ap= (nod-ned) (2π/20) where the symbols have their usual meaning. If we have a situation whereby, at a particular region in the plastic, for blue light (20= 450nm) the phase shift is 47 and the blue light is not transmitted, at what wavelength will the phase shift be 3r, where the transmission will be a maximum? What will happen to the blue light if we rotate one of the polarisers so that the transmission axes of the two are now parallel?arrow_forward
- TV-reception antennas for VHF are constructed with cross wires supported at their centers, as shown. The ideal length for the cross wires is one-half the wavelength to be received, with the more expensive antennas having one for each channel. Suppose you measure the lengths of the wires for particular channels and find them to be 1.94 and 0.753 m long, respectively. What are the frequencies for these channels?arrow_forwardThe coherence length of a wavetrain is the distance over which the phase constant is the same. (a) If an individual atom emits coherent light for 1x10-8 seconds, what is the coherence length of the wavetrain? (b) Suppose a partially reflecting mirror separates this wave train into two parts that are later reunited after one beam travels 5m and the other travels 10m. Do the waves produce interference fringes observable by a human eye?arrow_forwarda) The magnitude of polarization is given as P=OXE. Show that the higher-order (nonlinear) terms can be expressed as P = €0 (X1E+X2E2+x3E3+ ...). Identify the linear and nonlinear terms. b) Explain the physical mechanism of phase-matching by considering four-wave mixing.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning