Concept explainers
Radio Interference. Two radio antennas A and B
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
Modern Physics
The Cosmic Perspective (8th Edition)
An Introduction to Thermal Physics
University Physics Volume 2
Cosmic Perspective Fundamentals
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
- Two antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. Now observer P walks along the x axis toward antenna A. What is P's distance from A when they first observe fully constructive interference between the two waves?arrow_forwardIn an experiment to demonstrate interference, you connect two antennas to a single radio receiver. When the two antennas are adjacent to each other, the received signal is strong. You leave one antenna in place and move the other one directly away from the radio transmission tower. How far should the second antenna be moved in order to receive a minimum signal from a station that broadcasts at 103.4 MHz?arrow_forwardTwo in-phase sources emit electromagnetic waves with a wavelength of 2.40 cm. Point P on the curtain is 4.82 meters from the first source and 5.34 meters from the second source. What is the phase difference of the two waves emitted from these sources?arrow_forward
- Short-wave radio antennas A and B are connected to the same transmitter and emit coherent waves in phase and with the same frequency f. You must determine the value of f and the placement of the antennas that produce a maximum intensity through constructive interference at a receiving antenna that is located at point P, which is at the corner of your garage. First you place antenna A at a point 240.0 m due east of P. Next you place antenna B on the line that connects A and P, a distance x due east of P, where x < 240.0 m. Then you measure that a maximum in the total intensity from the two antennas occurs when x = 210.0 m, 216.0 m, and 222.0 m. You don’t investigate smaller or larger values of x. (Treat the antennas as point sources.) (a) What is the frequency f of the waves that are emitted by the antennas? (b) What is the greatest value of x, with x < 240.0 m, for which the interference at P is destructive?arrow_forwardTwo identical vertical radio antennas are 0.810 km apart. Both emit in phase at a frequency of 1.05 MHz = 1.05 * 106 Hz. Find the angles in the range from 0 and 90 at which the intensity measured several kilometers away from these antennas is (a) maximum and (b) minimum.arrow_forwardTwo radio antennas are separated by 1.60 m. Both broadcast identical 750 MHz waves. If you walk around the antennas in a circle of radius 10.0 m, how many maxima will you detect?arrow_forward
- Radio waves of wavelength 102 m from a galaxy reach a radio telescope by two separate paths as shown in the figure below. One is a direct path to the receiver, which is situated on the edge of a tall cliff by the ocean, and the second is by reflection off the water. As the galaxy rises in the east over the water, the first minimum of destructive interference occurs when the galaxy is e = 28.5° above the horizon. Find the height of the radio telescope dish above the water. 167 Your response differs from the correct answer by more than 10%. Double check your calculations. m Direct Radio path telescope Reflected path Additional Materials O eBookarrow_forwardMonochromatic electromagnetic radiation with wavelength l from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 µm, what is the slit width a if the wavelength is (a) 500 nm (visible light); (b) 50.0 µm (infrared radiation); (c) 0.500 nm (x rays)?arrow_forwardtwo sources in equal phase emit electromagnetic waves of 240 cm wavelength. P point of the curtain is 4.82 m from first source and 5.34 m from second source. What is the phase difference between two waves which are emitting from these sources?arrow_forward
- A receiver located in front of a sheer cliff as shown in the figure picks up interfering signals from a nearby 265 kHz transmitter. One signal travels directly from the transmitting antenna to the receiver, and the other first travels to and bounces off the cliff. (a) What is the wavelength of the signal? λ = [ km (b) For what minimum possible distance between the cliff and the receiver will the two waves interfere constructively at the receiver? km (c) For what minimum possible distance between the cliff and the receiver will the two waves interfere destructively at the receiver? km Transmitting Cliff Receiver antenna Use c = 2.998 x 108 m/s.arrow_forward(a) The transmitters emit identical signals in phase with each other, which the driver receives on the car radio. When the car is at point A, 1 = 440 m and 2 = 171 m away from the transmitters, the radio picks up a maximum net signal. What is the longest possible wavelength of the radio waves? (b) How long after the car passes point A does the radio experience a minimum in the net signal? Assume that the wavelength has the same value as in the previous problem.arrow_forwardTV channel 2 broadcasts in the frequency range 53 to 57 MHz. What is the corresponding range of wavelengths? (Let us denote the minimum and maximum wavelengths by ?min and ?max, respectively.) ?min = ?max =arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning