Concept explainers
INTERFERENCE AND SOUND WAVES. Interference occurs with not only light waves but also all frequencies of
35.57 The professor then adjusts the apparatus. The frequency that you hear does not change, but the loudness decreases. Now all of your fellow students can hear the tone. What did the professor do? (a) She turned off the oscillator. (b) She turned down the volume of the speakers. (c) She changed the phase relationship of the speakers. (d) She disconnected one speaker.
Want to see the full answer?
Check out a sample textbook solutionChapter 35 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
Physics (5th Edition)
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Cosmic Perspective Fundamentals
Essential University Physics: Volume 1 (3rd Edition)
College Physics: A Strategic Approach (4th Edition)
Conceptual Integrated Science
- A beam of blue light, whose wavelength in vacuum is λvacuum = 510nm, is incident onto a transparent material material n=2. What is its wavelength λ and frequency f inside the material? a. 510nm, (3/1020) x 1017 Hz b. 510nm, (3/510) x 1017 Hz c. 510nm, (3/255) x 1017 Hz d. 255nm, (3/510) x 1017 Hz e. 255nm, (3/255) x 1017 Hzarrow_forwardProblem 1. A geostationary satellite is located 36,000 kilo- meters (km) away from the surface of the Earth. Once a minute it takes a digital picture and transmits the data to a base station on Earth. The rate of transmission is 10 Mbps and the propogation speed is 3.0 × 108 m/s. You may assume the actual time required to take the picture is negligible. a. What is the propagation delay of the link? b. The bandwidth-delay product is defined to be Rxdprop where dprop is the propagation delay. Calculate the bandwidth-delay product Rxdprop where deprop is the propagation delay. c. Let x denote the size of the picture in bits. What is the minimum value for x so that the satellite is continuously transmitting data over the link?arrow_forwardIf two light rays one has wavelength A = 680 nm and the other one has wavelength опе 2=530 nm. 6. a) Which light rays travels a smaller distance in 1 second? Explain. b) Which light rays has the smaller frequency? Explain.arrow_forward
- Visible light ranges in wavelength from 400 nm to 700 nm. What is the lowest frequency of visible light? 03.1 × 108 Hz 5.0 × 10⁰ Hz 4.3 x 10¹4 Hz O7.5 x 10¹4 Hz O2.3 × 1020 Hz IGMENT Hantu #arrow_forwardConsider the speaker set-up in the previous question. Each speaker emits a frequency of 6.6·102 Hz in phase with the other. The listener is seated directly in front of one speaker, 1.6 m away. The speakers are 2.4 m away from each other. How many extra wavelengths are needed for sound to get from speaker 2 to the listener? Take the speed of sound in air to be 3.4·102 m/s.arrow_forwardCommonly, medical digital radiology ultrasound studies consist of about 25 imagesextracted from a full-motion ultrasound examination. Each image consists of 512 by512 pixels, each with 8 b of intensity information.a. How many bits are there in the 25 images?b. Ideally, however, doctors would like to use 512 * 512 8-bit frames at 30 fps(frames per second). Ignoring possible compression and overhead factors, what isthe minimum channel capacity required to sustain this full-motion ultrasound?c. Suppose each full-motion study consists of 25 s of frames. How many bytes ofstorage would be needed to store a single study in uncompressed form?arrow_forward
- A human cannot hear sound at a frequency of 100 kHz or sound at 102 kHz. But if you walk into a room in which two sources are emitting sound waves, one at 100 kHz and the other at 102 kHz, you’ll hear sound. Explain.arrow_forward8. The signal-to-noise ratio in an FM system is 4:1. The maximum allowed deviation is 4 kHz. How much frequency deviation is introduced by the phase shift caused by the noise when the modulating frequency is 650 Hz? What is the real signal-to-noise ratio? (Ans= δ = 149.5 Hz, S/N = 26.76:1) Prove the given answer and kindly provide a CLEAR and COMPLETE solution. (Answer should be typewritten)arrow_forwardAsap#3.arrow_forward
- Party hearing. As the number of people at a party increases, you must raise your voice for a listener to hear you against the background noise of the other partygoers. However, once you reach the level of yelling, the only way you can be heard is if you move closer to your listener, into the listener's "personal space." Model the situation by replacing you with an isotropic point source of fixed power Pand replacing your listener with a point that absorbs part of your sound waves. These points are initially separated by r; = 1.70 m. If the background noise increases by AB = 5.10 dB, the sound level at your listener must also increase. What separation rț is then required? Number i Unitsarrow_forwardAn important news is being broadcast inside a newsroom of a television, station. The news is to e transmitted by radio waves. The distance of the person watching from the station’s transmitter is 1.32 × 106 m. How long will take the news to reach a person watching the television? Select one: a. 0.44 × 10-3 s b. 4.04 × 10-3 s c. 0.04 × 10-3 s d. 4.4 × 10-3 sarrow_forwardBiologists use optical tweezers to manipulate micron-sized objects using a beam of light. In this technique, a laser beam is focused to a very small-diameter spot. Because small particles are attracted to regions of high light intensity, the focused beam can be used to “grab” onto particles and manipulate them for various experiments. In one experiment, a 10 mW laser beam is focused to a spot that has a diameter of 0.62 μm.a. What is the intensity of the light in this spot?b. What is the amplitude of the electric field?arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning