University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 35.4, Problem 35.4TYU
A thin layer of benzene (n = 1.501) lies on top of a sheet of fluorite (n = 1.434). It is illuminated from above with light whose wavelength in benzene is 400 nm. Which of the following possible thicknesses of the benzene layer will maximize the brightness of the reflected light? (i) 100 nm; (ii) 200 nm; (iii) 300 nm; (iv) 400 nm.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A thin layer of benzene (n = 1.501) lies on top of a sheet of fluorite (n = 1.434). It is illuminated from above with light whose wavelength in benzene is 400 nm. Which of the following possible thicknesses of the benzene layer will maximize the brightness of the reflected light? (i) 100 nm; (ii) 200 nm; (iii) 300 nm; (iv) 400 nm.
a) What is the minimum thickness of a film of glass (n=1.6) with
air on both sides, that will reflect light at
X = 600nm
?
b) What is the minimum thickness of a film of glass (n=1.6),
with air on both sides, that will NOT reflect light at
λ = 660nm
?
A beam of light is incident at 30° on a piece of glass in
air. The dispersion of colors spans 1 mm on the bottom
surface of the glass. The thickness of the glass slab is l =
10 cm. The index of refraction for red light is nred =
1.513. Given nviolet > nred· Determine the index of
refraction for violet light.
30
1 mm
1.546
O 1.587
1.563
1.553
1.572
O 1.591
Chapter 35 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 35.1 - Consider a point in Fig. 35.3 on the positive...Ch. 35.2 - You shine a tunable laser (whose wavelength can be...Ch. 35.3 - A two-slit interference experiment uses coherent...Ch. 35.4 - A thin layer of benzene (n = 1.501) lies on top of...Ch. 35.5 - You are observing the pattern of fringes in a...Ch. 35 - A two-slit interference experiment is set up, and...Ch. 35 - Could an experiment similar to Youngs two-slit...Ch. 35 - Monochromatic coherent light passing through two...Ch. 35 - In a two-slit interference pattern on a distant...Ch. 35 - Would the headlights of a distant car form a...
Ch. 35 - The two sources S1 and S2 shown in Fig. 35.3 emit...Ch. 35 - Could the Young two-slit interference experiment...Ch. 35 - Coherent red light illuminates two narrow slits...Ch. 35 - Coherent light with wavelength falls on two...Ch. 35 - Prob. 35.10DQCh. 35 - If the monochromatic light shown in Fig. 35.5a...Ch. 35 - In using the superposition principle to calculate...Ch. 35 - Prob. 35.13DQCh. 35 - A very thin soap film (n = 1.33), whose thickness...Ch. 35 - Interference can occur in thin films. Why is it...Ch. 35 - If we shine while light on an air wedge like that...Ch. 35 - Prob. 35.17DQCh. 35 - When a thin oil film spreads out on a puddle of...Ch. 35 - Section 35.1 Interference and Coherent Sources...Ch. 35 - Two speakers that are 15.0 m apart produce...Ch. 35 - A radio transmitting station operating at a...Ch. 35 - Radio Interference. Two radio antennas A and B...Ch. 35 - Prob. 35.5ECh. 35 - Two light sources can be adjusted to emit...Ch. 35 - Section 35.2 Two-Source Interference of Light...Ch. 35 - Coherent light with wavelength 450 nm falls on a...Ch. 35 - Two slits spaced 0.450 mm apart are placed 75.0 cm...Ch. 35 - If the entire apparatus of Exercise 35.9 (slits,...Ch. 35 - Two thin parallel slits that are 0.0116 mm apart...Ch. 35 - Coherent light with wavelength 400 nm passes...Ch. 35 - Two very narrow slits are spaced 1.80 m apart and...Ch. 35 - Coherent light that contains two wavelengths. 660...Ch. 35 - Coherent light with wavelength 600 nm passes...Ch. 35 - Coherent light of frequency 6.32 1014 Hz passes...Ch. 35 - In a two-slit interference pattern, the intensity...Ch. 35 - Coherent sources A and B emit electromagnetic...Ch. 35 - Coherent light with wavelength 500 nm passes...Ch. 35 - Two slits spaced 0.260 mm apart are 0.900 m from a...Ch. 35 - Consider two antennas separated by 9.00 m that...Ch. 35 - Two slits spaced 0.0720 mm apart are 0.800 m from...Ch. 35 - What is the thinnest film of a coating with n =...Ch. 35 - Nonglare Glass. When viewing a piece of art that...Ch. 35 - Two rectangular pieces of plane glass are laid one...Ch. 35 - A place of glass 9.00 cm long is placed in contact...Ch. 35 - A uniform film of TiO2, 1036 nm thick and having...Ch. 35 - A plastic film with index of refraction 1.70 is...Ch. 35 - The walls of a soap bubble have about the same...Ch. 35 - A researcher measures the thickness of a layer of...Ch. 35 - Prob. 35.31ECh. 35 - What is the thinnest soap film (excluding the case...Ch. 35 - How far must the mirror M2 (see Fig. 35.19) of the...Ch. 35 - Jan first uses a Michelson interferometer with the...Ch. 35 - One round face of a 3.25-m, solid, cylindrical...Ch. 35 - Newtons rings are visible when a planoconvex lens...Ch. 35 - BIO Coating Eyeglass Lenses. Eyeglass lenses can...Ch. 35 - BIO Sensitive Eyes. After an eye examination, you...Ch. 35 - Two flat plates of glass with parallel faces are...Ch. 35 - In a setup similar to that of Problem 35.39, the...Ch. 35 - Suppose you illuminate two thin slits by...Ch. 35 - CP CALC A very thin sheet of brass contains two...Ch. 35 - Two radio antennas radiating in phase are located...Ch. 35 - Prob. 35.44PCh. 35 - CP A thin uniform film of refractive index 1.750...Ch. 35 - GPS Transmission. The GPS (Global Positioning...Ch. 35 - White light reflects at normal incidence from the...Ch. 35 - Laser light of wavelength 510 nm is traveling in...Ch. 35 - Red light with wavelength 700 nm is passed through...Ch. 35 - BIO Reflective Coatings and Herring. Herring and...Ch. 35 - After a laser beam passes through two thin...Ch. 35 - DATA In your summer job at an optics company, you...Ch. 35 - DATA Short-wave radio antennas A and B are...Ch. 35 - DATA In your research lab, a very thin, flat piece...Ch. 35 - CP The index of refraction of a glass rod is 1.48...Ch. 35 - CP Figure P35.56 shows an interferometer known as...Ch. 35 - INTERFERENCE AND SOUND WAVES. Interference occurs...Ch. 35 - The professor returns the apparatus to the...Ch. 35 - The professor again returns the apparatus to its...Ch. 35 - The professor once again returns the apparatus to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light enters a prism of crown glass and refracts at an angle of 5.00 with respect to the normal at the interface. The crown glass has a mean index of refraction of 1.51. It is combined with one flint glass prism (n = 1.65) to produce no net deviation. a. Find the apex angle of the flint glass. b. Assume the index of refraction for violet light (v = 430 nm) is nv = 1.528 and the index of refraction for red light (r = 768 nm) is nr = 1.511 for crown glass. For flint glass using the same wavelengths, nv = 1.665 and nr = 1.645. Find the net dispersion.arrow_forwardA horizontal laser beam of wavelength 632.8 nm has a circular cross section 2.00 nun in diameter. A rectangular aperture is to lie placed in the center of the beam so that when the light falls perpendicularly on a wall 4.50 m away, the central maximum fills a rectangle 110 mm wide and 6.00 mm high. The dimensions are measured between the minima bracketing the central maximum. Find the required (a) width and (b) height of the aperture. (c) Is the longer dimension of the central bright patch in the diffraction pattern horizontal or vertical? (d) Is the longer dimension of the aperture horizontal or vertical? (e) Explain the relationship between these two rectangles, using a diagram.arrow_forwardFor light with 1 = 10-6 m what is the thickness of a coating with n = 1.225 that reduces normal incidence reflection from glass (nGlass =1.5) to zero? O 2.5 x 10-7 m O None of these O 4.08 x 10-7 m O 2.04 x 10 7 m O 8.16 x 10 7 O 3.33 x 10 7 m O 5 x 10 7 marrow_forward
- In the figure, assume two waves of light in air, of wavelength 657 nm, are initially in phase. One travels through a glass layer of index of refraction n₁ = 1.57 and thickness L. The other travels through an equally thick plastic layer of index of refraction n₂ = 1.25. (a) What is the smallest value L in meters should have if the waves are to end up with a phase difference of 5.71 rad? (b) If the waves arrive at some common point with the same amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive? Ro n1arrow_forwardA ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80°. What is the angular separation between the refracted red and refracted blue beams while they are in the glass? (The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.) O 0.27° 0.33° O 0.36° O 0.46° O 0.54°arrow_forwardDifferent isotopes of the same element emit light at slightly different wavelengths. A wavelength in the emission spectrum of a hydrogen atom is 656.45 nm; for deuterium, the corresponding wavelength is 656.27 nm. (a) What minimum number of slits is required to resolve these two wavelengths in second order? (b) If the grating has 500.00 slits/mm, find the angles and angular separation of these two wavelengths in the second orderarrow_forward
- If a soap bubble is 114.2 nm thick, what colour will appear at the centre when illuminated normally by white light? Take n = 1.34 for soap. take the colour ranges to be: violet = (400 - 446) nm blue = (446 - 500) nm green = (500 - 578) nm yellow = (578 - 592) nm orange = (592 - 620) nm red = (620 - 700) nm.arrow_forwardA prism of refractive index n, and another prism of refractive index n₂ are stuck together with a gap as shown in the figure. The angles of the prism are as shown. n₁ and n₂ depend on λ, the wavelength of light according to : n₁ = 1.20 + 10.8 × 104 1² n₂ = 1.45 + A 60° and volds 1.80 × 104 2² с 70° n₁ D 12 20⁰ 40° B where λ is in nm. (a) Calculate the wavelength o for which rays incident at 0 any angle on the interface BC pass through without bending at that interface.arrow_forwardA parallel beam of monochromatic light of wavelength λ= 5890 A° is incident on a thin film of µ=1.5 such that the angle of refraction is 60°. Find the minimum thickness of the film so that it appears dark. options 2.96 x 10-5 cm 1.26 x 10-5 cm 3.926 x 10-5 cm 1.66 x 10-5 cmarrow_forward
- In the figure, assume two waves of light in air, of wavelength 460 nm, are initially in phase. One travels through a glass layer of index of refraction n₁ = 1.59 and thickness L. The other travels through an equally thick plastic layer of index of refraction n₂ = 1.20. (a) What is the smallest value L in meters should have if the waves are to end up with a phase difference of 5.84 rad? (b) If the waves arrive at some common point with the same amplitude, is their interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive? L (a) Number (b) Units >arrow_forward1) Light of wavelength 550 nm in air is found to travel at 1.96 × 108 m/s in a certain liquid. (c = 3.0 × 108 m/s) A) What is the index of refraction of this liquid? B) What is the frequency of the light in air?arrow_forwardA monochromatic light of wavelength 316 nm in air is passing through a piece of glass of index of refraction n. The angle of incidence and refraction are 0₁ = 60° and 0₂ = 46° as shown in the figure. What is the speed of light in the glass? (c = 3.00 x 108 m/s) nair = 1 n a) 2.49 x 108 m/s b) 1.82 x 108 m/s c) 3.0 x 108 m/s d) 5.0 x 108 m/s e) None of these is correct. Write your ownarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY