Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 31, Problem 79P
SSM (a) In an oscillating LC circuit in terms of the maximum charge Q on the capacitor, what is the charge there when the energy in the electric field is 50.0% of that in the magnetic field? (b) What fraction of a period must elapse following the time the capacitor is fully charged for this condition to occur?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) In an oscillating LC circuit, in terms of the maximum charge Q on the capacitor, what is the charge there when the energy in the electric field is 50.0% of that in the magnetic field? (b) What fraction of a period must elapse following the time the capacitor is fully charged for this condition to occur?
(L11) A thin 0.120 m copper rod on the x-y plane and parallel to the x axis
moves with a constant velocity of 4.17 m/s in the +y direction as shown in
the figure. There is a uniform magnetic field 5.84E-2 T everywhere in
space pointing in the -z direction (into the page). The electric potential is
measured to be Va at point a and V₁ at point b. What is the potential
difference Va-V₁ (write down the sign and magnitude)?
+y
Va
ZO
Vb
+x
(L11) A thin 0.120 m copper rod on the x-y plane and parallel to the x axis
moves with a constant velocity of 5.19 m/s in the +x direction as shown in
the figure. There is a uniform magnetic field 6.35E-2 T everywhere in
space pointing in the +z direction (out of the page). The electric potential
is measured to be Va at point a and V at point b. What is the potential
difference Va-Vb (write down the sign and magnitude)?
+y.
+zO
Vb
V₂
a
+x
Chapter 31 Solutions
Fundamentals of Physics Extended
Ch. 31 - Figure 31-19 shows three oscillating LC circuits...Ch. 31 - Figure 31-20 shows graphs of capacitor voltage vc...Ch. 31 - Prob. 3QCh. 31 - What values of phase constant in Eq. 31-12 allow...Ch. 31 - Curve a in Fig. 31-21 gives the impedance Z of a...Ch. 31 - Prob. 6QCh. 31 - Prob. 7QCh. 31 - The values of the phase constant for four...Ch. 31 - Prob. 9QCh. 31 - Figure 31-24 shows three situations like those of...
Ch. 31 - Prob. 11QCh. 31 - Figure 31-25 shows the current i and driving emf ...Ch. 31 - Prob. 13QCh. 31 - An oscillating LC circuit consists of a 75.0 mH...Ch. 31 - The frequency of oscillation of a certain LC...Ch. 31 - In a certain oscillating LC circuit, the total...Ch. 31 - What is the capacitance of an oscillating LC...Ch. 31 - In an oscillating LC circuit, L = 1.10 mH and C =...Ch. 31 - A 0.50 kg body oscillates in SHM on a spring that,...Ch. 31 - SSM The energy in an oscillating LC circuit...Ch. 31 - A single loop consists of inductors L1, L2, . . ....Ch. 31 - ILW In an oscillating LC circuit with L = 50 mH...Ch. 31 - Prob. 10PCh. 31 - SSM WWW A variable capacitor with a range from 10...Ch. 31 - In an oscillating LC circuit, when 75.0 of the...Ch. 31 - In an oscillating LC circuit, L = 3.00 mH and C =...Ch. 31 - To construct an oscillating LC system, you can...Ch. 31 - ILW An oscillating LC circuit consisting of a 1.0...Ch. 31 - An inductor is connected across a capacitor whose...Ch. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Using the loop rule, derive the differential...Ch. 31 - GO In an oscillating LC circuit in which C = 4.00...Ch. 31 - Prob. 21PCh. 31 - A series circuit containing inductance L1 and...Ch. 31 - GO In an oscillating LC circuit, L = 25.0 mH and C...Ch. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - GO In an oscillating series RLC circuit, find the...Ch. 31 - SSM In an oscillating series RLC circuit, show...Ch. 31 - A 1.50 F capacitor is connected as in Fig. 31-10...Ch. 31 - ILW A 50.0 mH inductor is connected as in Fig....Ch. 31 - A 50.0 resistor is connected as in Fig. 31-8 to...Ch. 31 - a At what frequency would a 6.0 mH inductor and a...Ch. 31 - GO An ac generator has emf = m sin dt, with m =...Ch. 31 - SSM An ac generator has emf = m sindt = /4, where...Ch. 31 - GO An ac generator with emf = m sin dt, where m =...Ch. 31 - ILW A coil of inductance 88 mH and unknown...Ch. 31 - An alternating source with a variable frequency, a...Ch. 31 - An electric motor has an effective resistance of...Ch. 31 - The current amplitude I versus driving angular...Ch. 31 - Remove the inductor from the circuit in Fig. 31-7...Ch. 31 - An alternating source drives a series RLC circuit...Ch. 31 - Prob. 41PCh. 31 - An alternating source with a variable frequency,...Ch. 31 - Prob. 43PCh. 31 - GO An ac generator with emf amplitude m = 220 V...Ch. 31 - GO ILW a In an RLC circuit, can the amplitude of...Ch. 31 - GO An alternating emf source with a variable...Ch. 31 - SSM WWW An RLC circuit such as that of Fig. 31-7...Ch. 31 - Prob. 48PCh. 31 - GO In Fig. 31-33, a generator with an adjustable...Ch. 31 - An alternating emf source with a variable...Ch. 31 - SSM The fractional half-width d of a resonance...Ch. 31 - An ac voltmeter with large impedance is connected...Ch. 31 - SSM An air conditioner connected to a 120 V rms ac...Ch. 31 - What is the maximum value of an ac voltage whose...Ch. 31 - What direct current will produce the same amount...Ch. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - For Fig. 31 -35, show that the average rate at...Ch. 31 - GO In Fig. 31-7, R = 15.0 , C = 4.70 F, and L =...Ch. 31 - Prob. 60PCh. 31 - SSM WWW Figure 31-36 shows an ac generator...Ch. 31 - Prob. 62PCh. 31 - SSM ILW A transformer has 500 primary turns and 10...Ch. 31 - Prob. 64PCh. 31 - An ac generator provides emf to a resistive load...Ch. 31 - In Fig. 31-35, let the rectangular box on the left...Ch. 31 - GO An ac generator produces emf = m sindt /4,...Ch. 31 - A series RLC circuit is driven by a generator at a...Ch. 31 - A generator of frequency 3000 Hz drives a series...Ch. 31 - A 45.0 mH inductor has a reactance of 1.30 k. a...Ch. 31 - An RLC circuit is driven by a generator with an...Ch. 31 - A series RLC circuit is driven in such a way that...Ch. 31 - A capacitor of capacitance 158 f and an inductor...Ch. 31 - An oscillating LC circuit has an inductance of...Ch. 31 - For a certain driven series RLC circuit, the...Ch. 31 - A L5D F capacitor has a capacitive re ac lance of...Ch. 31 - Prob. 77PCh. 31 - An electric motor connected to a 120 V, 60.0 Hz ac...Ch. 31 - SSM a In an oscillating LC circuit in terms of the...Ch. 31 - A series RLC circuit is driven by an alternating...Ch. 31 - SSM In a certain series RLC circuit being driven...Ch. 31 - A 1.50 mH inductor in an oscillating LC circuit...Ch. 31 - A generator with an adjustable frequency of...Ch. 31 - A series RLC circuit has a resonant frequency of...Ch. 31 - SSM An LC circuit oscillates at a frequency of...Ch. 31 - When under load and operating at an rms voltage of...Ch. 31 - The ac generator in Fig. 31-39 supplies 120 V at...Ch. 31 - In an oscillating LC circuit, L = 8.00 mH and C =...Ch. 31 - Prob. 89PCh. 31 - What capacitance would you connect across a 1.30...Ch. 31 - A series circuit with resistor inductor ...Ch. 31 - Prob. 92PCh. 31 - When the generator emf in Sample Problem 31.07 is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
15. A compact car has a maximum acceleration of 4.0 m/s2 when it carries only the driver and has a total mass o...
College Physics: A Strategic Approach (3rd Edition)
HOW DO WE KNOW? In this chapter, we focused on extranuclear inheritance and how traits can be determined by gen...
Concepts of Genetics (12th Edition)
1. How many significant figures does each of the following numbers have?
a. 0.73 b. 7.30 c. 73 d. 0.073
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
11.57 Draw the cis and trans isomers for each of the following: (11.6)
a. 2-pentene
b. 3-hexene
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A parallel-plate capacitor with plate separation d is connected to a source of emf that places a time-dependent voltage V(t) across its circular plates of radius r0and area (a) Write an expression for the time rate of change of energy inside the capacitor in terms of V(t) and dV(t)/ dt. (b) Assuming that V(t) is increasing with time, identify the directions of the elecuic field lines inside the capacitor and of the magnetic field lines at the edge of the region between the plates, and then the direction of the Poynting vector S at this location. (c) Obtain expressions for the time dependence of E(t), for B(t) from the displacement current, and for the magnitude of the Poynting vector at the edge of the region between the plates. (d) From S , obtain an expression In terms of ‘(t) and dV(t)/dt for the rate at which electromagnetic field energy the region between the plates. (e) Compare the results of pails (a) and (d) and explain the relationship between them.arrow_forwardIn an oscillating LC circuit the maximum charge on the capacitor is 2.0 × 10-6 C and the maximum current through the inductor is 8.0 mA. (a) What is the period of the oscillations? (b) How much time elapses between an instant when the capacitor is uncharged and the next instant when it is fully charged?arrow_forwardA 5000-pF capacitor is charged to 100 V and then quickly connected to an 80-mH inductor. Determine (a) the maximum energy stored in the magnetic field of the inductor, (b) the peak value of the current, and (c) the frequency of oscillation of the circuit.arrow_forward
- Check Your Understanding (a) What is the magnetic flux through one turn of a solenoid of self- inductance 8.0 × 10-5 H when a current of 3.0 A flows through it? Assume that the solenoid has 1000 turns and is wound from wire of diameter 1.0 mm. (b) What is the cross-sectional area of the solenoid?arrow_forwardTwo long, parallel wires cy equal currents in opposite directions. The radius of each wire is a, and the distance between the centers of the wires is d, Show that if the magnetic flux within the wires themselves can be ignored, the self-inductance of a length 1 of such a pair of wires is L 0 l in d1 a (Hint Calculate the magnetic flux through a rectangle of length 1 between the wires and then use L=N/Iarrow_forwardThe magnetic field in the core of an air-filled solenoid is 1.50 T, By how much will this magnetic field decrease if the ail is pumped out of the core while the current is held constant?arrow_forward
- A thin conducting bar (60.0 cm long) aligned in the positive y direction is moving with velocity v=(1.25m/s)i in a region with a spatially uniform 0.400-T magnetic field directed at an angle of 36.0 above the xy plane. a. What is the magnitude of the emf induced along the length of the moving bar? b. Which end of the bar is positively charged?arrow_forwardDesign a current loop that, when rotated in a uniform magnetic field of strength 0.10 T, will produce an emf =0 sin t. where 0=110V and 0=110V .arrow_forwardThe magnetic flux through a metal ring varies with time t according to (B = at3 bt2, where (B is in webers, a = 6.00 s3, b = 18.0 s2, and t is in seconds. The resistance of the ring is 3.00 . For the interval from t = 0 to t = 2.00 s, determine the maximum current induced in the ring.arrow_forward
- Is Ampere’s law valid for all closed paths? Why isn’t it normally useful for calculating a magnetic field?arrow_forwardA single-turn circular loop of wire of radius 50 mm lies in a plane perpendicular to a spatially uniform magnetic field. During a 0.10-s time interval, the magnitude of the field Increases uniformly from 200 to 300 mT. (a) Determine the emf Induced in the ioop. (b) If the magnetic field is directed out of the page, what is the direction of the cun-ent induced in the loop?arrow_forwardShow that the expression for the magnetic field of a toroid reduces to tlrat for the field of an infinite solenoid in the limit that the cenmal radius goes to infinity.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY