Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 31, Problem 29P
ILW A 50.0 mH inductor is connected as in Fig. 31-12 to an ac generator with ℰm = 30.0 V. What is the amplitude of the resulting alternating current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 50.0ohm resistor is connected to an ac generator with e= 30.0 V.What is the amplitude of the resulting alternating current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz?
A 44.0Q resistor is connected as in the figure to an ac generator with &m = 25.0 V. What is the amplitude of the resulting alternating
current if the frequency of the emf is (a)1.44 kHz and (b)9.13 kHz?
\ir vR
(a) Number
i
Units
(b) Number
Units
An ac generator with emf em sin vdt, where m e=25.0 V and vd 377 rad/s, is connected to a 4.15 mF capacitor. (a)What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c)When the emf of the generator is -12.5 V and increasing in magnitude, what is the current?
Chapter 31 Solutions
Fundamentals of Physics Extended
Ch. 31 - Figure 31-19 shows three oscillating LC circuits...Ch. 31 - Figure 31-20 shows graphs of capacitor voltage vc...Ch. 31 - Prob. 3QCh. 31 - What values of phase constant in Eq. 31-12 allow...Ch. 31 - Curve a in Fig. 31-21 gives the impedance Z of a...Ch. 31 - Prob. 6QCh. 31 - Prob. 7QCh. 31 - The values of the phase constant for four...Ch. 31 - Prob. 9QCh. 31 - Figure 31-24 shows three situations like those of...
Ch. 31 - Prob. 11QCh. 31 - Figure 31-25 shows the current i and driving emf ...Ch. 31 - Prob. 13QCh. 31 - An oscillating LC circuit consists of a 75.0 mH...Ch. 31 - The frequency of oscillation of a certain LC...Ch. 31 - In a certain oscillating LC circuit, the total...Ch. 31 - What is the capacitance of an oscillating LC...Ch. 31 - In an oscillating LC circuit, L = 1.10 mH and C =...Ch. 31 - A 0.50 kg body oscillates in SHM on a spring that,...Ch. 31 - SSM The energy in an oscillating LC circuit...Ch. 31 - A single loop consists of inductors L1, L2, . . ....Ch. 31 - ILW In an oscillating LC circuit with L = 50 mH...Ch. 31 - Prob. 10PCh. 31 - SSM WWW A variable capacitor with a range from 10...Ch. 31 - In an oscillating LC circuit, when 75.0 of the...Ch. 31 - In an oscillating LC circuit, L = 3.00 mH and C =...Ch. 31 - To construct an oscillating LC system, you can...Ch. 31 - ILW An oscillating LC circuit consisting of a 1.0...Ch. 31 - An inductor is connected across a capacitor whose...Ch. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Using the loop rule, derive the differential...Ch. 31 - GO In an oscillating LC circuit in which C = 4.00...Ch. 31 - Prob. 21PCh. 31 - A series circuit containing inductance L1 and...Ch. 31 - GO In an oscillating LC circuit, L = 25.0 mH and C...Ch. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - GO In an oscillating series RLC circuit, find the...Ch. 31 - SSM In an oscillating series RLC circuit, show...Ch. 31 - A 1.50 F capacitor is connected as in Fig. 31-10...Ch. 31 - ILW A 50.0 mH inductor is connected as in Fig....Ch. 31 - A 50.0 resistor is connected as in Fig. 31-8 to...Ch. 31 - a At what frequency would a 6.0 mH inductor and a...Ch. 31 - GO An ac generator has emf = m sin dt, with m =...Ch. 31 - SSM An ac generator has emf = m sindt = /4, where...Ch. 31 - GO An ac generator with emf = m sin dt, where m =...Ch. 31 - ILW A coil of inductance 88 mH and unknown...Ch. 31 - An alternating source with a variable frequency, a...Ch. 31 - An electric motor has an effective resistance of...Ch. 31 - The current amplitude I versus driving angular...Ch. 31 - Remove the inductor from the circuit in Fig. 31-7...Ch. 31 - An alternating source drives a series RLC circuit...Ch. 31 - Prob. 41PCh. 31 - An alternating source with a variable frequency,...Ch. 31 - Prob. 43PCh. 31 - GO An ac generator with emf amplitude m = 220 V...Ch. 31 - GO ILW a In an RLC circuit, can the amplitude of...Ch. 31 - GO An alternating emf source with a variable...Ch. 31 - SSM WWW An RLC circuit such as that of Fig. 31-7...Ch. 31 - Prob. 48PCh. 31 - GO In Fig. 31-33, a generator with an adjustable...Ch. 31 - An alternating emf source with a variable...Ch. 31 - SSM The fractional half-width d of a resonance...Ch. 31 - An ac voltmeter with large impedance is connected...Ch. 31 - SSM An air conditioner connected to a 120 V rms ac...Ch. 31 - What is the maximum value of an ac voltage whose...Ch. 31 - What direct current will produce the same amount...Ch. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - For Fig. 31 -35, show that the average rate at...Ch. 31 - GO In Fig. 31-7, R = 15.0 , C = 4.70 F, and L =...Ch. 31 - Prob. 60PCh. 31 - SSM WWW Figure 31-36 shows an ac generator...Ch. 31 - Prob. 62PCh. 31 - SSM ILW A transformer has 500 primary turns and 10...Ch. 31 - Prob. 64PCh. 31 - An ac generator provides emf to a resistive load...Ch. 31 - In Fig. 31-35, let the rectangular box on the left...Ch. 31 - GO An ac generator produces emf = m sindt /4,...Ch. 31 - A series RLC circuit is driven by a generator at a...Ch. 31 - A generator of frequency 3000 Hz drives a series...Ch. 31 - A 45.0 mH inductor has a reactance of 1.30 k. a...Ch. 31 - An RLC circuit is driven by a generator with an...Ch. 31 - A series RLC circuit is driven in such a way that...Ch. 31 - A capacitor of capacitance 158 f and an inductor...Ch. 31 - An oscillating LC circuit has an inductance of...Ch. 31 - For a certain driven series RLC circuit, the...Ch. 31 - A L5D F capacitor has a capacitive re ac lance of...Ch. 31 - Prob. 77PCh. 31 - An electric motor connected to a 120 V, 60.0 Hz ac...Ch. 31 - SSM a In an oscillating LC circuit in terms of the...Ch. 31 - A series RLC circuit is driven by an alternating...Ch. 31 - SSM In a certain series RLC circuit being driven...Ch. 31 - A 1.50 mH inductor in an oscillating LC circuit...Ch. 31 - A generator with an adjustable frequency of...Ch. 31 - A series RLC circuit has a resonant frequency of...Ch. 31 - SSM An LC circuit oscillates at a frequency of...Ch. 31 - When under load and operating at an rms voltage of...Ch. 31 - The ac generator in Fig. 31-39 supplies 120 V at...Ch. 31 - In an oscillating LC circuit, L = 8.00 mH and C =...Ch. 31 - Prob. 89PCh. 31 - What capacitance would you connect across a 1.30...Ch. 31 - A series circuit with resistor inductor ...Ch. 31 - Prob. 92PCh. 31 - When the generator emf in Sample Problem 31.07 is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
PRACTICE PROBLEM 15.3
Outline all steps in a reasonable mechanism for the formation of isopropylbenzene from pr...
Organic Chemistry
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 1.58 μF capacitor is connected as in the figure to an ac generator with Em = 40.0 V. What is the amplitude of the resulting alternating current if the frequency of the emf is (a)1.02 kHz and (b)9.80 kHz? (a) Number i (b) Number i ic vc Units Unitsarrow_forwardA 2.22 µF capacitor is connected as in the figure to an ac generator with Em = 40.0 V. What is the amplitude of the resulting alternating current if the frequency of the emf is (a)0.782 kHz and (b)7.13 kHz? (a) Number tel (b) Number i ic vc ! Units A Units A >arrow_forwardPlease Asaparrow_forward
- In the figure, an ac generator with emf E = Em sin wat, where Em = 25.1 V and wy = 376 rad/s, is connected to a 4.41 UF capacitor. (a) What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c) When the emf of the generator is - 12.2 V and increasing in magnitude, what is the current? (a) Number 0.0416198 Units A (b) Number Units A (c) Number i 0.0363727 Units Aarrow_forwardIn the figure, an ac generator with emf E = Em sin wat, where Em = 26.0 V and wd = 383 rad/s, is connected to a 12.3 H inductor. (a) What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c) When the emf of the generator is - 12.8 V and increasing in magnitude, what is the current? (a) Number i (b) Number i (c) Number i ellele iL VL Units A Units V Units Aarrow_forwardA 45.1 mH inductor is connected as in the figure to an ac generator with εm = 30.0 V. What is the amplitude of the resulting alternating current if the frequency of the emf is (a)1.40 kHz and (b)11.2 kHz?arrow_forward
- In the figure, an ac generator with emf E = Em sin wat, where Em = 24.3 V and wd = 385 rad/s, is connected to a 4.45 µF capacitor. (a) What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c) When the emf of the generator is - 12.9 V and increasing in magnitude, what is the current? (a) Number i (b) Number i (c) Number i C T ic vc Units A Units V Units Aarrow_forwardA 1.50 mF capacitor is connected to an ac generator with m = 30.0 V. What is the amplitude of the resulting alternating current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz?arrow_forwardIn the figure, an ac generator with emf E = Em sin wat, where Em = 24.7 V and wd = 371 rad/s, is connected to a 4.38 µF capacitor. (a) What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c) When the emf of the generator is - 12.2 V and increasing in magnitude, what is the current? (a) Number i (b) Number i (c) Number i &f ic Units Units Units <arrow_forward
- In the given circuit the AC source has @ = 100 rad s¯¹. Considering the inductor and capacitor to be ideal, what will be the current I flowing through the circuit? 100 μF 100 Ω www mmmm wwwww 0.50 Η 50 Ω 200 Varrow_forwardA 13.6 H inductor is connected to an AC source whose emf is represented by the equation E = Emax sin(2 (pi) f t) where Emax = 47.0 V and f = 45.8 Hz. Determine the amplitude of the current in mA.arrow_forwardA series RLC circuit, with the components 1.4 kN, 22 mH and 1.8 µF, is connected to an alternating emf source of the amplitude ɛm = 18.0 V at the angular frequency @g. Assuming the circuit is under resonance, calculate the root mean square of the current , in mA, through the circuit?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY