Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Chapter 31, Problem 64P
To determine
To find:
a) Smallest value of ratio
b) Second smallest value of
c) Largest value of
d) Smallest value of ratio
e) Second smallest value of
f) Largest value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure shows an "autotransformer." It consists of a single coil (with an iron core). Three taps T; are provided. Between taps T1 and T2
there are 227 turns, and between taps T2 and T3 there are 824 turns. Any two taps can be chosen as the primary terminals, and any
two taps can be chosen as the secondary terminals. For choices producing a step-up transformer, what are the (a) smallest, (b) second
smallest, and (c) largest values of the ratio V3/V,? For a step-down transformer, what are the (d) smallest, (e) second smallest, and (f)
largest values of ,/V,?
o T2
(a) Number
Units
(b) Number
i
Units
(c) Number
Units
i
(d) Number
Units
(e) Number
i
Units
(f) Number
Units
>
>
>
>
1) A voltage is varied in a primary solenoid with 2900 +/- 100 turns of coil. The length of the solenoid is (0.121+/-0.002)m and has a resistance of (72.9+/-0.7)ohms. The voltage as a function of time is listed inthe following table:
a) Use some graph paper to plot the voltage vs the time.
b) Calculate the slope of the line from the graph in part A
c) Divide the slope in Part B by the resistance of the primary solenoid to obtain dI/dt (with uncertainty)
Note: See image for the original question and table.
Problem 1:
Suppose the transformer of
Figure 1 has 500 turns on its
primary and 1000 turns on it:
secondary.
(a) Determine its turns ratio.
Is it step-up or step-down?
(b) If its primary voltage is ep
25 sin wt Volt, what is its
secondary voltage?
d
O° phase shift
Figure 1
+
Chapter 31 Solutions
Fundamentals of Physics Extended
Ch. 31 - Figure 31-19 shows three oscillating LC circuits...Ch. 31 - Figure 31-20 shows graphs of capacitor voltage vc...Ch. 31 - Prob. 3QCh. 31 - What values of phase constant in Eq. 31-12 allow...Ch. 31 - Curve a in Fig. 31-21 gives the impedance Z of a...Ch. 31 - Prob. 6QCh. 31 - Prob. 7QCh. 31 - The values of the phase constant for four...Ch. 31 - Prob. 9QCh. 31 - Figure 31-24 shows three situations like those of...
Ch. 31 - Prob. 11QCh. 31 - Figure 31-25 shows the current i and driving emf ...Ch. 31 - Prob. 13QCh. 31 - An oscillating LC circuit consists of a 75.0 mH...Ch. 31 - The frequency of oscillation of a certain LC...Ch. 31 - In a certain oscillating LC circuit, the total...Ch. 31 - What is the capacitance of an oscillating LC...Ch. 31 - In an oscillating LC circuit, L = 1.10 mH and C =...Ch. 31 - A 0.50 kg body oscillates in SHM on a spring that,...Ch. 31 - SSM The energy in an oscillating LC circuit...Ch. 31 - A single loop consists of inductors L1, L2, . . ....Ch. 31 - ILW In an oscillating LC circuit with L = 50 mH...Ch. 31 - Prob. 10PCh. 31 - SSM WWW A variable capacitor with a range from 10...Ch. 31 - In an oscillating LC circuit, when 75.0 of the...Ch. 31 - In an oscillating LC circuit, L = 3.00 mH and C =...Ch. 31 - To construct an oscillating LC system, you can...Ch. 31 - ILW An oscillating LC circuit consisting of a 1.0...Ch. 31 - An inductor is connected across a capacitor whose...Ch. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Using the loop rule, derive the differential...Ch. 31 - GO In an oscillating LC circuit in which C = 4.00...Ch. 31 - Prob. 21PCh. 31 - A series circuit containing inductance L1 and...Ch. 31 - GO In an oscillating LC circuit, L = 25.0 mH and C...Ch. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - GO In an oscillating series RLC circuit, find the...Ch. 31 - SSM In an oscillating series RLC circuit, show...Ch. 31 - A 1.50 F capacitor is connected as in Fig. 31-10...Ch. 31 - ILW A 50.0 mH inductor is connected as in Fig....Ch. 31 - A 50.0 resistor is connected as in Fig. 31-8 to...Ch. 31 - a At what frequency would a 6.0 mH inductor and a...Ch. 31 - GO An ac generator has emf = m sin dt, with m =...Ch. 31 - SSM An ac generator has emf = m sindt = /4, where...Ch. 31 - GO An ac generator with emf = m sin dt, where m =...Ch. 31 - ILW A coil of inductance 88 mH and unknown...Ch. 31 - An alternating source with a variable frequency, a...Ch. 31 - An electric motor has an effective resistance of...Ch. 31 - The current amplitude I versus driving angular...Ch. 31 - Remove the inductor from the circuit in Fig. 31-7...Ch. 31 - An alternating source drives a series RLC circuit...Ch. 31 - Prob. 41PCh. 31 - An alternating source with a variable frequency,...Ch. 31 - Prob. 43PCh. 31 - GO An ac generator with emf amplitude m = 220 V...Ch. 31 - GO ILW a In an RLC circuit, can the amplitude of...Ch. 31 - GO An alternating emf source with a variable...Ch. 31 - SSM WWW An RLC circuit such as that of Fig. 31-7...Ch. 31 - Prob. 48PCh. 31 - GO In Fig. 31-33, a generator with an adjustable...Ch. 31 - An alternating emf source with a variable...Ch. 31 - SSM The fractional half-width d of a resonance...Ch. 31 - An ac voltmeter with large impedance is connected...Ch. 31 - SSM An air conditioner connected to a 120 V rms ac...Ch. 31 - What is the maximum value of an ac voltage whose...Ch. 31 - What direct current will produce the same amount...Ch. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - For Fig. 31 -35, show that the average rate at...Ch. 31 - GO In Fig. 31-7, R = 15.0 , C = 4.70 F, and L =...Ch. 31 - Prob. 60PCh. 31 - SSM WWW Figure 31-36 shows an ac generator...Ch. 31 - Prob. 62PCh. 31 - SSM ILW A transformer has 500 primary turns and 10...Ch. 31 - Prob. 64PCh. 31 - An ac generator provides emf to a resistive load...Ch. 31 - In Fig. 31-35, let the rectangular box on the left...Ch. 31 - GO An ac generator produces emf = m sindt /4,...Ch. 31 - A series RLC circuit is driven by a generator at a...Ch. 31 - A generator of frequency 3000 Hz drives a series...Ch. 31 - A 45.0 mH inductor has a reactance of 1.30 k. a...Ch. 31 - An RLC circuit is driven by a generator with an...Ch. 31 - A series RLC circuit is driven in such a way that...Ch. 31 - A capacitor of capacitance 158 f and an inductor...Ch. 31 - An oscillating LC circuit has an inductance of...Ch. 31 - For a certain driven series RLC circuit, the...Ch. 31 - A L5D F capacitor has a capacitive re ac lance of...Ch. 31 - Prob. 77PCh. 31 - An electric motor connected to a 120 V, 60.0 Hz ac...Ch. 31 - SSM a In an oscillating LC circuit in terms of the...Ch. 31 - A series RLC circuit is driven by an alternating...Ch. 31 - SSM In a certain series RLC circuit being driven...Ch. 31 - A 1.50 mH inductor in an oscillating LC circuit...Ch. 31 - A generator with an adjustable frequency of...Ch. 31 - A series RLC circuit has a resonant frequency of...Ch. 31 - SSM An LC circuit oscillates at a frequency of...Ch. 31 - When under load and operating at an rms voltage of...Ch. 31 - The ac generator in Fig. 31-39 supplies 120 V at...Ch. 31 - In an oscillating LC circuit, L = 8.00 mH and C =...Ch. 31 - Prob. 89PCh. 31 - What capacitance would you connect across a 1.30...Ch. 31 - A series circuit with resistor inductor ...Ch. 31 - Prob. 92PCh. 31 - When the generator emf in Sample Problem 31.07 is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A coil with a self-inductance of 3.0 H carries a current that decreases at a uniform rate dl/dt = -0.050 A/s. What is the emf induced in the coil? Describe the polarity of the induced emf.arrow_forwardA coil with a self-inductance of 2.0 H carries a current that varies with time according to I(t) = (2.0 A)sin 120t . Find an expression for the emf induced in the coil.arrow_forwardA coil is wound as a transformer of rectangular cross-section. If all the linear dimensions of the transformer are increased by a factor 2 and the number of turns per unit length of the coil remain the same, the self inductance increased by a factor of ?arrow_forward
- A simple electric circuit is formed by a voltage source (V), a resistor (R) and an inductor (2) connected in series. It is given that R-100, L= 0.1 H and V= 10 V. Assume that the circuit is closed at t=0 by closing the switch S. Solve given that (0) = 0. Warrow_forwardThe primary coil of a step-down transformer is connected across the terminals of a standard wall socket, and resistor 1 with a resistance R₁ is connected across the secondary coil. The current in the resistor is then measured. Next, resistor 2 with a resistance R₂ is connected directly across the terminals of the wall socket (without the transformer). The current in this resistor is also measured and found to be the same as the current in resistor 1. How does the resistance R₂ compare to the resistance R₁? The resistance R₂ is less than the resistance R₁. The resistance R₂ is greater than the resistance R₁. The resistance R₂ is the same as the resistance R₁. Insufficient information to answer.arrow_forwardQuestion in the attachmentsarrow_forward
- A power transmission line feeds input power at 2300 V to a stepdown transformer with its primary windings having 4000 turns. What should be the number of turns in the secondary in order to get output power at 230 V?arrow_forwardA student needs to reduce the percent power loss by 100 times by using a transformer. What would the type and required ratio for the transformer of the windings (primary:secondary)? O step-down: 1 to 10 Ostep-down: 10 to 1 O step-up: 10 to 1 step-up: 1 to 10arrow_forwardHow much of a change in current over time would produce a self-induced EMF of 6.00V in a 10µH inductor? If you had to make a 10µH cylindrical inductor what dimensions (radius and length) could you use if you were only allowed up to 100 windings? Your inductor must be 10µH to within +/- 2%arrow_forward
- With the specific variables mentioned below, what is the number of secondary loops (Ns) of the transformer? Primary voltage (rms) Vp = 220 V, Np = 200, secondary voltage (Vs) = 1100 V. Group of answer choices 800 220 1000 2200arrow_forwardA transformer has Np = 500 turns on the primary coil and Ns = 60 turns on the primary coil secondary. (a) What kind of transformer is this? (b) By what factor does this transformer change the voltage and the AC current?arrow_forwardAn AC transformer in Okahandja operates at input voltage of eight-and-a-half kilo-volts to suppy 120 volts to some small houses in the local area, what must be the ratio of the number of primary-to-secondary turns of this transformer?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning