An alternating emf source with a variable frequency fd is connected in series with an 80.0 Ω resistor and a 40.0 mH inductor. The emf amplitude is 6.00 V. (a) Draw a phasor diagram for phasor VR (the potential across the resistor) and phasor VL (the potential across the inductor), (b) At what driving frequency fd do the two phasors have the same length? At that driving frequency, what are (c) the phase angle in degrees, (d) the angular speed at which the phasors rotate, and (e) the current amplitude?
Want to see the full answer?
Check out a sample textbook solutionChapter 31 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Fundamentals Of Thermodynamics
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Living By Chemistry: First Edition Textbook
College Physics: A Strategic Approach (3rd Edition)
Microbiology: An Introduction
- An RLC series circuit consists of a 50 resistor, a 200F capacitor, and a 120-mN inductor whose coil has a resistance of 20. The source for the circuit has an tins emf of 240 V at a frequency of 60 Hz. Calculate the tins voltages across the (a) resistor, (b) capacitor, and (c) inductor.arrow_forwardWhen a camera uses a flash, a fully charged capacitor discharges through an inductor. In what time must the 0.100-A current through a 2.00-mH inductor be switched on or off to induce a 500-V emf?arrow_forwardIn Figure 14.12, =12V , L = 20 mH, and R=5.0. Determine (a) the time constant of the circuit, (b) the initial current through the resistor, (C) the final current through the resistor, (d) the current through the resistor when t=2L , and (e) the voltages across the inductor and the resistor when t=2L .arrow_forward
- In an RLC series circuit, can the voltage measured across the capacitor be greater than the voltage of the source? Answer the same question for the voltage across the inductor.arrow_forwardA coil with a self-inductance of 2.0 H carries a current that varies with time according to I(t) = (2.0 A)sin 120t . Find an expression for the emf induced in the coil.arrow_forwardA step-up transformer is designed so that the output of its secondary winding is 2000 V(rms) when the primary winding is connected to a 110-V (rms) line voltage, (a) If there are 100 turns in the primary winding, how many turns are there in the secondary winding? (b) If a resistor connected across the secondary winding draws an rms current of 0.75 A. what is the current in die primary winding?arrow_forward
- An inductor and a resistor are connected in series across an AC source as in Figure OQ33.1. Immediately after the switch is closed, which of the following statements is true? (a) The current in the circuit is V/R. (b) The voltage across the inductor is zero, (c) The current in the circuit is zero, (d) The voltage across the resistor is V (e) The voltage across the inductor is half its maximum value.arrow_forwardIn an oscillating RLC circuit, R = 7.0 L. = 10 mH. And C = 3.0 F. Initially, the capacitor has a charge of 8.0 C and the current is zero. Calculate the charge on the capacitor (a) five cycles later and (b) 50 cycles later.arrow_forwardIn the transformer shown in Figure P33.51, the load resistance RL is 50.0 . The turns ratio N1/N2 is 2.50, anti the rms source voltage is Vs = 80.0 V. If a voltmeter across the load resistance measures an rms voltage of 25.0 V, what is the source resistance Rs?arrow_forward
- The figure below shows a circuit with a battery of & = 3.78 V, a resistor with R = 2.97 2, and an inductor with L = 2.09 H. If the battery is connected at t = 0, at what time will the rate of energy stored in the inductor be equal to the power dissipated in the resistor? i S R 0000 ELarrow_forwardThe figure below shows a circuit with a battery of EMF = 3.75 V, a resistor with R = 2.16 2, and an inductor with L = 2.45 H. If the battery is connected at t = 0, at what time will the rate of energy stored in the inductor be equal to x = 1.89 times the power dissipated in the resistor? i S 99 4+ R L2 2 Hint You can use the conservation of energy to determine the fraction of the power dissipated in the resistor: total energy lost by a battery per unit of time (power) is &I is spent on the rate of energy stored by the inductor and the power dissipated in the resistor I² R. As EMF, resistance, and inductance are given to you, you know the time dependence of the current to calculate the fraction x at any given time.arrow_forwardA circuit consists of a 0.8 H inductor and a 3.5 ohm resistor. At t = 0 the current through the inductor is 1.2 A. How much energy is stored in the inductor at this instant?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College