Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 31, Problem 31P
(a) At what frequency would a 6.0 mH inductor and a 10 µF capacitor have the same reactance? (b) What would the reactance be? (c) Show that this frequency would be the natural frequency of an oscillating circuit with the same L and C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) At what frequency would a 6.0 mH inductor and a 10 mF capacitor have the same reactance? (b) What would the reactance be? (c) Show that this frequency would be the natural frequency of an oscillating circuit with the same L and C.
To receive AM radio, you want an RLC circuit that can be made to resonate at any frequency between 500 and 1650 kHz. This is accomplished with a fixed 1.00 μH inductor connected to a variable capacitor.
What would be the minimum capacitance, in nanofarads, that would be required?
Cmin =
Part (b) What would be the maximum capacitance, in nanofarads, that would be required?
Cmax=
(a) Compute the reactance of a 0.450 H inductor at frequencies of 60.0 Hz and 600 Hz. (b) Compute the reactance of a 2.50 mF capacitor at the same frequencies. (c) At what frequency is the reactance of a 0.450 H inductor equal to that of a 2.50 mF capacitor?
Chapter 31 Solutions
Fundamentals of Physics Extended
Ch. 31 - Figure 31-19 shows three oscillating LC circuits...Ch. 31 - Figure 31-20 shows graphs of capacitor voltage vc...Ch. 31 - Prob. 3QCh. 31 - What values of phase constant in Eq. 31-12 allow...Ch. 31 - Curve a in Fig. 31-21 gives the impedance Z of a...Ch. 31 - Prob. 6QCh. 31 - Prob. 7QCh. 31 - The values of the phase constant for four...Ch. 31 - Prob. 9QCh. 31 - Figure 31-24 shows three situations like those of...
Ch. 31 - Prob. 11QCh. 31 - Figure 31-25 shows the current i and driving emf ...Ch. 31 - Prob. 13QCh. 31 - An oscillating LC circuit consists of a 75.0 mH...Ch. 31 - The frequency of oscillation of a certain LC...Ch. 31 - In a certain oscillating LC circuit, the total...Ch. 31 - What is the capacitance of an oscillating LC...Ch. 31 - In an oscillating LC circuit, L = 1.10 mH and C =...Ch. 31 - A 0.50 kg body oscillates in SHM on a spring that,...Ch. 31 - SSM The energy in an oscillating LC circuit...Ch. 31 - A single loop consists of inductors L1, L2, . . ....Ch. 31 - ILW In an oscillating LC circuit with L = 50 mH...Ch. 31 - Prob. 10PCh. 31 - SSM WWW A variable capacitor with a range from 10...Ch. 31 - In an oscillating LC circuit, when 75.0 of the...Ch. 31 - In an oscillating LC circuit, L = 3.00 mH and C =...Ch. 31 - To construct an oscillating LC system, you can...Ch. 31 - ILW An oscillating LC circuit consisting of a 1.0...Ch. 31 - An inductor is connected across a capacitor whose...Ch. 31 - Prob. 17PCh. 31 - Prob. 18PCh. 31 - Using the loop rule, derive the differential...Ch. 31 - GO In an oscillating LC circuit in which C = 4.00...Ch. 31 - Prob. 21PCh. 31 - A series circuit containing inductance L1 and...Ch. 31 - GO In an oscillating LC circuit, L = 25.0 mH and C...Ch. 31 - Prob. 24PCh. 31 - Prob. 25PCh. 31 - GO In an oscillating series RLC circuit, find the...Ch. 31 - SSM In an oscillating series RLC circuit, show...Ch. 31 - A 1.50 F capacitor is connected as in Fig. 31-10...Ch. 31 - ILW A 50.0 mH inductor is connected as in Fig....Ch. 31 - A 50.0 resistor is connected as in Fig. 31-8 to...Ch. 31 - a At what frequency would a 6.0 mH inductor and a...Ch. 31 - GO An ac generator has emf = m sin dt, with m =...Ch. 31 - SSM An ac generator has emf = m sindt = /4, where...Ch. 31 - GO An ac generator with emf = m sin dt, where m =...Ch. 31 - ILW A coil of inductance 88 mH and unknown...Ch. 31 - An alternating source with a variable frequency, a...Ch. 31 - An electric motor has an effective resistance of...Ch. 31 - The current amplitude I versus driving angular...Ch. 31 - Remove the inductor from the circuit in Fig. 31-7...Ch. 31 - An alternating source drives a series RLC circuit...Ch. 31 - Prob. 41PCh. 31 - An alternating source with a variable frequency,...Ch. 31 - Prob. 43PCh. 31 - GO An ac generator with emf amplitude m = 220 V...Ch. 31 - GO ILW a In an RLC circuit, can the amplitude of...Ch. 31 - GO An alternating emf source with a variable...Ch. 31 - SSM WWW An RLC circuit such as that of Fig. 31-7...Ch. 31 - Prob. 48PCh. 31 - GO In Fig. 31-33, a generator with an adjustable...Ch. 31 - An alternating emf source with a variable...Ch. 31 - SSM The fractional half-width d of a resonance...Ch. 31 - An ac voltmeter with large impedance is connected...Ch. 31 - SSM An air conditioner connected to a 120 V rms ac...Ch. 31 - What is the maximum value of an ac voltage whose...Ch. 31 - What direct current will produce the same amount...Ch. 31 - Prob. 56PCh. 31 - Prob. 57PCh. 31 - For Fig. 31 -35, show that the average rate at...Ch. 31 - GO In Fig. 31-7, R = 15.0 , C = 4.70 F, and L =...Ch. 31 - Prob. 60PCh. 31 - SSM WWW Figure 31-36 shows an ac generator...Ch. 31 - Prob. 62PCh. 31 - SSM ILW A transformer has 500 primary turns and 10...Ch. 31 - Prob. 64PCh. 31 - An ac generator provides emf to a resistive load...Ch. 31 - In Fig. 31-35, let the rectangular box on the left...Ch. 31 - GO An ac generator produces emf = m sindt /4,...Ch. 31 - A series RLC circuit is driven by a generator at a...Ch. 31 - A generator of frequency 3000 Hz drives a series...Ch. 31 - A 45.0 mH inductor has a reactance of 1.30 k. a...Ch. 31 - An RLC circuit is driven by a generator with an...Ch. 31 - A series RLC circuit is driven in such a way that...Ch. 31 - A capacitor of capacitance 158 f and an inductor...Ch. 31 - An oscillating LC circuit has an inductance of...Ch. 31 - For a certain driven series RLC circuit, the...Ch. 31 - A L5D F capacitor has a capacitive re ac lance of...Ch. 31 - Prob. 77PCh. 31 - An electric motor connected to a 120 V, 60.0 Hz ac...Ch. 31 - SSM a In an oscillating LC circuit in terms of the...Ch. 31 - A series RLC circuit is driven by an alternating...Ch. 31 - SSM In a certain series RLC circuit being driven...Ch. 31 - A 1.50 mH inductor in an oscillating LC circuit...Ch. 31 - A generator with an adjustable frequency of...Ch. 31 - A series RLC circuit has a resonant frequency of...Ch. 31 - SSM An LC circuit oscillates at a frequency of...Ch. 31 - When under load and operating at an rms voltage of...Ch. 31 - The ac generator in Fig. 31-39 supplies 120 V at...Ch. 31 - In an oscillating LC circuit, L = 8.00 mH and C =...Ch. 31 - Prob. 89PCh. 31 - What capacitance would you connect across a 1.30...Ch. 31 - A series circuit with resistor inductor ...Ch. 31 - Prob. 92PCh. 31 - When the generator emf in Sample Problem 31.07 is...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Identify each of the following characteristics as belonging to cervical, thoracic, or lumbar vertebrae; the sac...
Human Anatomy & Physiology (2nd Edition)
What are the approximate velocities of P and S waves at the bottom of the inner core? P wave velocity_____ km/s...
Applications and Investigations in Earth Science (9th Edition)
MAKE CONNECTIONS In Concept 20.2, you learned about genome-wide association studies. Explain how these studies...
Campbell Biology (11th Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At 1000 Hz, the reactance of a 5.0-mH inductor is equal to the reactance of a particular capacitor. What is the capacitance of the capacitor?arrow_forwardCan a circuit e1eent have both capacitance and inductance?arrow_forwardCalculate the rms currents for an ac source is given by v(t)=v0sint , where V0=100V and =200rad/s when connected across (a) a 20F capacitor, (b) a 20-mH inductor, and (c) a 50 resistor.arrow_forward
- In an LC circuit, what determines the frequency and the amplitude of the energy oscillations in either the inductor or capacitor?arrow_forwardExplain why at high frequencies a capacitor acts as an ac short, whereas an inductor acts as an open circuit.arrow_forwardCheck Your Understanding What happens to the resonant frequency of an RLC series circuit when the following quantities are increased by a factor of 4: (a) the capacitance, (b) the self-inductance, and (c) the resistance?arrow_forward
- What resistance R must be connected in series with a 200-mH inductor of the resulting RLC oscillating circuit is to decay to 50% of its initial value of charge in 50 cycles? To 0.10% of its initial value in 50 cycles?arrow_forwardAn LC circuit in an AM tuner (in a car stereo) uses a coil with an inductance of 2.5 mH and a variable capacitor. If the natural frequency of the circuit is to be adjustable over the range 540 to 1600 kHz (the AM broadcast band), that range of capacitance is required?arrow_forwardAn RLC series circuit consists of a 50 resistor, a 200F capacitor, and a 120-mN inductor whose coil has a resistance of 20. The source for the circuit has an tins emf of 240 V at a frequency of 60 Hz. Calculate the tins voltages across the (a) resistor, (b) capacitor, and (c) inductor.arrow_forward
- Check Your Understanding The angular frequency of the oscillations in an LC circuit is 2.0103rad/s . (a) If L = 0.10H, what is C? (b) Suppose that at t = 0, all the is stored in the inductor. What is the value of ? (c) A second identical capacitor is connected in parallel with the original capacitor. What is the angular frequency of this circuit?arrow_forwardThe self-inductance and capacitance of an LC circuit e 0.20 mH and 5.0 pF. What is the angular frequency at which the circuit oscillates?arrow_forwardIn an oscillating LC circuit the maximum charge on the capacitor is 2.0 × 10-6 C and the maximum current through the inductor is 8.0 mA. (a) What is the period of the oscillations? (b) How much time elapses between an instant when the capacitor is uncharged and the next instant when it is fully charged?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY