Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 64PCE
(a)
To determine
The minimum kinetic energy of the electron of platinum atom to appear in the X-ray tube of the spectrum.
(b)
To determine
The minimum voltage necessary to produce the
K α
X-rays, when the electron is accelerated from rest.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
X-ray is produced by bombarding a tungsten target with high energy electrons accelerated by 8.8 kV of voltage. Use σ = 1 for the electron transition down to K shell (n = 1) and σ = 7.4 for the electron transition down to L shell (n = 2) for characteristic X-ray.
What is the kinetic energy of electrons accelerated by 8.8 kV of high voltage? Assume that the initial speed of electrons emitted from a filament by thermionic emission is zero.
What is the minimum wavelength of electromagnetic waves produced by bremsstrahlung?
In the figure, thex rays shown are produced when 35.0 keV electrons strike a molybdenum target. If the accelerating potential is
maintained at this value but a different target is used instead, what values of (a) Amin (b) the wavelength of the K, line and (c) the
wavelength of the Kg line result? The K, L, and M x-ray levels for the new target are 22.74, 4.68, and 0.82 keV.
Kg
Continuous
spectrum Ks
Amin
30
40
50
60
70
80
90
Wavelength (pm)
(a) Number
i
Units
(b) Number
i
Units
(c) Number
i
Units
Relative intensity
The wavelengths of the Lyman series for hydrogen are given by
1
λ
= RH
1 −
1
n2
,n = 2, 3, 4, . . .
(a) Calculate the wavelengths of the first three lines in this series.
nm
nm
nm
(b) Identify the region of the electromagnetic spectrum in which these lines appear.
infrared regionvisible light region x-ray regionultraviolet regiongamma ray region
Chapter 31 Solutions
Physics (5th Edition)
Ch. 31.1 - Prob. 1EYUCh. 31.2 - Prob. 2EYUCh. 31.3 - Prob. 3EYUCh. 31.4 - Prob. 4EYUCh. 31.5 - Prob. 5EYUCh. 31.6 - Prob. 6EYUCh. 31.7 - Prob. 7EYUCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQ
Ch. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 1PCECh. 31 - Prob. 2PCECh. 31 - Prob. 3PCECh. 31 - Prob. 4PCECh. 31 - Prob. 5PCECh. 31 - Prob. 6PCECh. 31 - Prob. 7PCECh. 31 - Prob. 8PCECh. 31 - Prob. 9PCECh. 31 - Prob. 10PCECh. 31 - Prob. 11PCECh. 31 - Prob. 12PCECh. 31 - Prob. 13PCECh. 31 - Prob. 14PCECh. 31 - Prob. 15PCECh. 31 - Prob. 16PCECh. 31 - Prob. 17PCECh. 31 - Prob. 18PCECh. 31 - Prob. 19PCECh. 31 - Prob. 20PCECh. 31 - Prob. 21PCECh. 31 - Prob. 22PCECh. 31 - Prob. 23PCECh. 31 - Prob. 24PCECh. 31 - Prob. 25PCECh. 31 - Prob. 26PCECh. 31 - Prob. 27PCECh. 31 - Prob. 28PCECh. 31 - Prob. 29PCECh. 31 - Prob. 30PCECh. 31 - Prob. 31PCECh. 31 - Prob. 32PCECh. 31 - Prob. 33PCECh. 31 - Prob. 34PCECh. 31 - Prob. 35PCECh. 31 - Prob. 36PCECh. 31 - Prob. 37PCECh. 31 - Prob. 38PCECh. 31 - Prob. 39PCECh. 31 - Prob. 40PCECh. 31 - Prob. 41PCECh. 31 - Prob. 42PCECh. 31 - Prob. 43PCECh. 31 - Prob. 44PCECh. 31 - Prob. 45PCECh. 31 - Prob. 46PCECh. 31 - Prob. 47PCECh. 31 - Prob. 48PCECh. 31 - Prob. 49PCECh. 31 - Prob. 50PCECh. 31 - Prob. 51PCECh. 31 - Prob. 52PCECh. 31 - Give the electronic configuration for the ground...Ch. 31 - Prob. 54PCECh. 31 - Prob. 55PCECh. 31 - Prob. 56PCECh. 31 - The configuration of the outer electrons in Ni is...Ch. 31 - Prob. 58PCECh. 31 - Prob. 59PCECh. 31 - Prob. 60PCECh. 31 - Prob. 61PCECh. 31 - Prob. 62PCECh. 31 - Prob. 63PCECh. 31 - Prob. 64PCECh. 31 - Prob. 65PCECh. 31 - Prob. 66PCECh. 31 - Prob. 67PCECh. 31 - Prob. 68GPCh. 31 - Prob. 69GPCh. 31 - Prob. 70GPCh. 31 - Prob. 71GPCh. 31 - Prob. 72GPCh. 31 - Prob. 73GPCh. 31 - Prob. 74GPCh. 31 - Prob. 75GPCh. 31 - Prob. 76GPCh. 31 - Prob. 77GPCh. 31 - Prob. 78GPCh. 31 - Prob. 79GPCh. 31 - Prob. 80GPCh. 31 - Prob. 81GPCh. 31 - Prob. 82GPCh. 31 - Prob. 83GPCh. 31 - Prob. 84PPCh. 31 - Prob. 85PPCh. 31 - Prob. 86PPCh. 31 - Prob. 87PPCh. 31 - Prob. 88PPCh. 31 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The work function for potassium is 2.26 eV. What is the cutoff frequency when this metal is used as photoelectrode? What is the stopping potential when for the emitted electrons when this photo electrode is exposed to radiation of frequency 1200 THz?arrow_forwardThe Balmer series for hydrogen was discovered before either the Lyman or the Paschen series. Why?arrow_forward(a) Using the Pauli exclusion principle and the rules relating the allowed values of the quantum numbers (n,l,ml,ms), prove that the maximum number of electrons in a subshell is 2n2. (b) In a similar manner, prove that the maximum number of electrons in a shell is 2n2.arrow_forward
- What is the de Brogue wavelength of a proton whose kinetic energy is 2.0 MeV? 10.0 MeV?arrow_forwardWhy are X-rays emitted only for electron transitions to inner shells? What type of photon is emitted for transitions between outer shells?arrow_forwardA Thomson-type experiment with relativistic electrons. One of the earliest experiments to show that p = mv (rather than p = mv) was that of Neumann. [G. Neumann, Ann. Physik 45:529 (1914)]. The apparatus shown in Figure P4.5 is identical to Thomsons except that the source of high-speed electrons is a radioactive radium source and the magnetic field B is arranged to act on the electron over its entire trajectory from source to detector. The combined electric and magnetic fields act as a velocity selector, only passing electrons with speed v, where v = V/Bd (Equation 4.6), while in the region where there is only a magnetic field the electron moves in a circle of radius r, with r given by p = Bre. This latter region (E = 0, B = constant) acts as a momentum selector because electrons with larger momenta have paths with larger radii. (a) Show that the radius of the circle described by the electron is given by r = (l2 + y2)/2y. (b) Typical values for the Neumann experiment were d = 2.51 104 m, B = 0.0177 T, and l = 0.0247 m. For V = 1060 V, y, the most critical value, was measured to be 0.0024 0.0005 m. Show that these values disagree with the y value calculated from p = mv but agree with the y value calculated from p = mv within experimental error. (Hint: Find v from Equation 4.6, use mv = Bre or mv = Bre to find r, and use r to find y.) Figure P4.5 The Neumann apparatus.arrow_forward
- Chapter 38, Problem 019 (a) If the work function for a certain metal is 1.9 ev, what is the stopping potential for electrons ejected from the metal when light of wavelength 504 nm shines on the metal? (b) What is the maximum speed of the ejected electrons? (a) Number Units (b) Number Unitsarrow_forwarda) An electron in a hydrogen atom has energy E= -3.40 eV, where the zero of energy is at the ionization threshold. In the Bohr model, what is the angular momentum of the electron? Express your result as a multiple of ħ. Ans. b) What is the deBroglie wavelength of the electron when it is in this state? Ans. c) When the electron is in this state, what is the ratio of the circumference of the orbit of the electron to the deBroglie wavelength of the electron? Ans. d) The electron makes a transition from the state with energy E= -3.40 eV to the ground state, that has energy -13.6 eV. What is the wavelength of the photon emitted during this transition? Ans.arrow_forwardIn an x-ray tube, electrons are accelerated through a large voltage and then slammed into a target. This causes the electrons to lose their energy very rapidly. The energy lost from the electron is converted into x-rays. What is the accelerating voltage of an x-ray tube that produces a spectrum of x-rays where the shortest wavelength is 0.017 nm ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning