Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 33PCE
(a)
To determine
The frequency of the photon that is emitted when the electron jumps to state
n f = n − 1
.
(b)
To determine
To write: The frequency of the electron’s orbital motion in the state
(c)
To determine
The comparison between the result of part (a) and part (b) in the limit of large
n
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need the answer as soon as possible
Please asap
What is the average radius of the orbit of an electron in the n=2 energy level of an oxygen atom (Z=8)? Express your answer in pico-meters.
Chapter 31 Solutions
Physics (5th Edition)
Ch. 31.1 - Prob. 1EYUCh. 31.2 - Prob. 2EYUCh. 31.3 - Prob. 3EYUCh. 31.4 - Prob. 4EYUCh. 31.5 - Prob. 5EYUCh. 31.6 - Prob. 6EYUCh. 31.7 - Prob. 7EYUCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQ
Ch. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 1PCECh. 31 - Prob. 2PCECh. 31 - Prob. 3PCECh. 31 - Prob. 4PCECh. 31 - Prob. 5PCECh. 31 - Prob. 6PCECh. 31 - Prob. 7PCECh. 31 - Prob. 8PCECh. 31 - Prob. 9PCECh. 31 - Prob. 10PCECh. 31 - Prob. 11PCECh. 31 - Prob. 12PCECh. 31 - Prob. 13PCECh. 31 - Prob. 14PCECh. 31 - Prob. 15PCECh. 31 - Prob. 16PCECh. 31 - Prob. 17PCECh. 31 - Prob. 18PCECh. 31 - Prob. 19PCECh. 31 - Prob. 20PCECh. 31 - Prob. 21PCECh. 31 - Prob. 22PCECh. 31 - Prob. 23PCECh. 31 - Prob. 24PCECh. 31 - Prob. 25PCECh. 31 - Prob. 26PCECh. 31 - Prob. 27PCECh. 31 - Prob. 28PCECh. 31 - Prob. 29PCECh. 31 - Prob. 30PCECh. 31 - Prob. 31PCECh. 31 - Prob. 32PCECh. 31 - Prob. 33PCECh. 31 - Prob. 34PCECh. 31 - Prob. 35PCECh. 31 - Prob. 36PCECh. 31 - Prob. 37PCECh. 31 - Prob. 38PCECh. 31 - Prob. 39PCECh. 31 - Prob. 40PCECh. 31 - Prob. 41PCECh. 31 - Prob. 42PCECh. 31 - Prob. 43PCECh. 31 - Prob. 44PCECh. 31 - Prob. 45PCECh. 31 - Prob. 46PCECh. 31 - Prob. 47PCECh. 31 - Prob. 48PCECh. 31 - Prob. 49PCECh. 31 - Prob. 50PCECh. 31 - Prob. 51PCECh. 31 - Prob. 52PCECh. 31 - Give the electronic configuration for the ground...Ch. 31 - Prob. 54PCECh. 31 - Prob. 55PCECh. 31 - Prob. 56PCECh. 31 - The configuration of the outer electrons in Ni is...Ch. 31 - Prob. 58PCECh. 31 - Prob. 59PCECh. 31 - Prob. 60PCECh. 31 - Prob. 61PCECh. 31 - Prob. 62PCECh. 31 - Prob. 63PCECh. 31 - Prob. 64PCECh. 31 - Prob. 65PCECh. 31 - Prob. 66PCECh. 31 - Prob. 67PCECh. 31 - Prob. 68GPCh. 31 - Prob. 69GPCh. 31 - Prob. 70GPCh. 31 - Prob. 71GPCh. 31 - Prob. 72GPCh. 31 - Prob. 73GPCh. 31 - Prob. 74GPCh. 31 - Prob. 75GPCh. 31 - Prob. 76GPCh. 31 - Prob. 77GPCh. 31 - Prob. 78GPCh. 31 - Prob. 79GPCh. 31 - Prob. 80GPCh. 31 - Prob. 81GPCh. 31 - Prob. 82GPCh. 31 - Prob. 83GPCh. 31 - Prob. 84PPCh. 31 - Prob. 85PPCh. 31 - Prob. 86PPCh. 31 - Prob. 87PPCh. 31 - Prob. 88PPCh. 31 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A student in a physics laboratory observes a hydrogen spectrum with a diffraction grating for the purpose of measuring the wavelengths of the emitted radiation, hr the spectrum, she observes a yellow line and finds its wavelength to be 589 nm. (a) Assuming that this is part of the Balmer series, determine the principal quantum number of the initial state, (b) What is unreasonable about this result? (c) Which assumptions are unreasonable 01 inconsistent?arrow_forward6. An electron in hydrogen atom is in initial state Þ(r, 0) = A(2410o + iÞ210 + 421–1 – 2ib211) where wnim are the eigenfunctions of the hydrogen atom a. Determine the constant A b. What is the probability of finding the electron in the first excited state? hw = - n2 c. Write the state Þ(r, t) at time t, using energy eigenvalues as En d. Find the expectation value of L in the state Þ(r,t e. Find the expectation values of Lx and Ly in the state (r, t f. If measurement of Lz led to the value –ħ what will be results of measurement of energy and the square of total orbital momentum immediately afterwards and what are their probabilities?arrow_forwardAn electron is bound to a region of space by a springlike force with natural frequency 04.082 x 10¹5 rad/s. a) Find the ground state energy of this electron. Give your answer in units of eV. b) Suppose the electron absorbs a photon and jumps from the ground state to the first excited state. What is the wavelength of the photon? Give your answer in units of nm.arrow_forward
- i know the answer is NOT 9.42(10^-21)arrow_forward(Hand by writing ans.)A certain atom has an energy level of 3.50 eV above the ground state. When excited to this state, it remains 4.0µs, on average, before emitting a photon and returning to the ground state. i) What is the energy of the photon? What is the wavelength of the photon? ii) What is the smallest possible uncertainty in the energy of the photon?arrow_forwardWhat is the wavelength of a photon emitted when an electron jumps from the n=3 to the n=2 energy levels of a lithium atom (Z=3)? Express your answer in nanometers and keep three significant digits.arrow_forward
- a. Conceptually, discuss the particle-wave duality of light. Discuss the implications of this in combination with the de Broglie (pronounced “de Broy”) equation. b. The electron of a hydrogen atom is usually no further than 1.0 Å from the proton. We can therefore say the upper limit of the radius of an isolated hydrogen atom is roughly 1.0 Å. How does the de Broglie wavelength of the electron compare to this radius? (The velocity of an electron in the first principal energy level is about 2.2 x 106 m/s). Explain why wave-particle duality is so important for quantum mechanics, yet not required in macroscopic systems that are well described by classical mechanics. c. Comment as to whether neutrons with velocity 4.14 x 103 m/s may be used to determine structures of molecules in a diffraction-based experiment. You may consider the relevant distance between atoms in molecules to be on the order of 1 Å.arrow_forwarda) The element helium is named for the Sun because that is where it was first observed. What is the shortest wavelength that one would expect to observe from a singly ionized helium atom in the atmosphere of the Sun? b) Suppose light with a wavelength of 388.9 nm is observed from singly ionized helium. What are the initial and final values of the quantum number nn corresponding to this wavelength? Enter your answers numerically separated by a commaarrow_forwardProblem 1. Two State System Consider an atom with only two states: a ground state with energy 0, and an excited state with energy A. Determine the mean energy (e) and variance in energy (de). Sketch the mean energy versus A/k T.arrow_forward
- An atom of iron has a radius of 156. pm and the average orbital speed of the electrons in it is about ×5.7*10^7 m/s. Calculate the least possible uncertainty in a measurement of the speed of an electron in an atom of iron. Write your answer as a percentage of the average speed, and round it to 2 significant digits.arrow_forwarda) Calculate the energy of the emissive transition with the lowest energy possible for the Lyman series, for a mole of hydrogen atoms. Express your answer in joules/mol. b) Is this transition in the visible spectral domain? If not, in which region is it located?arrow_forwardThe root mean square speed of the hydrogen molecules at temperature t °C is given by 3x8.31 x (t+273) m 2 x 10-3 Calculate the de Broglie wavelength (in nanometers) of the hydrogen molecules at temperature 24 °C. The mass of the hydrogen molecule is 2 x 1.66 x 10-27 kg. Use two decimals in your answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning