Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 5PCE
To determine
The distance of closest approach between the alpha particle and the gold nucleus for the case
K = 5.3 MeV
.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ernest Rutherford is famous for, among other things, shooting alpha particles at unsuspecting gold atoms. Consider an alpha particle endowed with 5.00 MeV of energy. Determine the closest distance this particle can approach the nucleus of a gold atom before deflecting
An alpha particle (charge +3.20 x 10^-19C, mass 6.64 x10^-27kg) is initially 5.2cm away from a fixed golden nucleus (charge +1.36 x10^-17C, mass 3.29x10^-25kg), and moving toward the nucleus with a speed of 8.1x10^5m/s. How close to the nucleus does te alpha particle get? Note: the nucleus diameter is approximately 10^-14m and the alpha particles's is 10^-15m
An 8.3 MeV alpha particle is shot directly toward the nucleus of a gold atom (atomic number 79). What is the distance of closest approach of the alpha particle to the nucleus?
Chapter 31 Solutions
Physics (5th Edition)
Ch. 31.1 - Prob. 1EYUCh. 31.2 - Prob. 2EYUCh. 31.3 - Prob. 3EYUCh. 31.4 - Prob. 4EYUCh. 31.5 - Prob. 5EYUCh. 31.6 - Prob. 6EYUCh. 31.7 - Prob. 7EYUCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQ
Ch. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 1PCECh. 31 - Prob. 2PCECh. 31 - Prob. 3PCECh. 31 - Prob. 4PCECh. 31 - Prob. 5PCECh. 31 - Prob. 6PCECh. 31 - Prob. 7PCECh. 31 - Prob. 8PCECh. 31 - Prob. 9PCECh. 31 - Prob. 10PCECh. 31 - Prob. 11PCECh. 31 - Prob. 12PCECh. 31 - Prob. 13PCECh. 31 - Prob. 14PCECh. 31 - Prob. 15PCECh. 31 - Prob. 16PCECh. 31 - Prob. 17PCECh. 31 - Prob. 18PCECh. 31 - Prob. 19PCECh. 31 - Prob. 20PCECh. 31 - Prob. 21PCECh. 31 - Prob. 22PCECh. 31 - Prob. 23PCECh. 31 - Prob. 24PCECh. 31 - Prob. 25PCECh. 31 - Prob. 26PCECh. 31 - Prob. 27PCECh. 31 - Prob. 28PCECh. 31 - Prob. 29PCECh. 31 - Prob. 30PCECh. 31 - Prob. 31PCECh. 31 - Prob. 32PCECh. 31 - Prob. 33PCECh. 31 - Prob. 34PCECh. 31 - Prob. 35PCECh. 31 - Prob. 36PCECh. 31 - Prob. 37PCECh. 31 - Prob. 38PCECh. 31 - Prob. 39PCECh. 31 - Prob. 40PCECh. 31 - Prob. 41PCECh. 31 - Prob. 42PCECh. 31 - Prob. 43PCECh. 31 - Prob. 44PCECh. 31 - Prob. 45PCECh. 31 - Prob. 46PCECh. 31 - Prob. 47PCECh. 31 - Prob. 48PCECh. 31 - Prob. 49PCECh. 31 - Prob. 50PCECh. 31 - Prob. 51PCECh. 31 - Prob. 52PCECh. 31 - Give the electronic configuration for the ground...Ch. 31 - Prob. 54PCECh. 31 - Prob. 55PCECh. 31 - Prob. 56PCECh. 31 - The configuration of the outer electrons in Ni is...Ch. 31 - Prob. 58PCECh. 31 - Prob. 59PCECh. 31 - Prob. 60PCECh. 31 - Prob. 61PCECh. 31 - Prob. 62PCECh. 31 - Prob. 63PCECh. 31 - Prob. 64PCECh. 31 - Prob. 65PCECh. 31 - Prob. 66PCECh. 31 - Prob. 67PCECh. 31 - Prob. 68GPCh. 31 - Prob. 69GPCh. 31 - Prob. 70GPCh. 31 - Prob. 71GPCh. 31 - Prob. 72GPCh. 31 - Prob. 73GPCh. 31 - Prob. 74GPCh. 31 - Prob. 75GPCh. 31 - Prob. 76GPCh. 31 - Prob. 77GPCh. 31 - Prob. 78GPCh. 31 - Prob. 79GPCh. 31 - Prob. 80GPCh. 31 - Prob. 81GPCh. 31 - Prob. 82GPCh. 31 - Prob. 83GPCh. 31 - Prob. 84PPCh. 31 - Prob. 85PPCh. 31 - Prob. 86PPCh. 31 - Prob. 87PPCh. 31 - Prob. 88PPCh. 31 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Alpha particles of mass m = 6.64 ✕ 10−27 kg and kinetic energy K = 905 keV are projected at a target nucleus. If the alpha particles have a de Broglie wavelength with the same value as the diameter of the target nucleus, determine the radius (in m) of the target nucleus.arrow_forwardIn an alpha particle (42He) scattering experiment, using a thin gold (19779Au) foil, the initial kinetic energy of the alpha particle is 2.0MeV. What is the potential energy of the alpha particle/gold nucleus system at closest impact?arrow_forwardIn a Rutherford scattering experiment, an a-particle (charge = +2e) heads directly toward a gold nucleus (charge = +79e). The α-particle had a kinetic energy of 5.0 MeV when very far (r→ ∞) from the nucleus. Assuming the gold nucleus to be fixed in space, determine the distance of closest approach. Hint: Use conservation of energy with PE =kq1q2/r.arrow_forward
- While reproducing the Rutherford scattering experiment in an advanced laboratory class, a student uses a gold foil with thickness 28.8 nm. The radioactive source emits α particles at 7.70 MeV, and the detector is placed at 12.5 cm from the target foil. What fraction of the α particles is detected per unit area at an angle of 40.6°? What fraction of the α particles will scatter to the angle given above or higher?arrow_forwardAssume a hypothetical atom with a nucleus that consists of two positrons (instead of two protons). Positron has a charge of +1 and the mass of an electron. Write down the hydrogen like energy of a neutral 2-positrons atom.arrow_forwardIn Millikan's oil-drop experiment, one looks at a small oil drop held motionless between two plates. Take the voltage between the plates to be 2241 V and the plate separation to be 2 cm. The oil drop (of density 0.81 g/cm3) has a diameter of 4.0 ×10-6 m. Find the charge on the drop, in terms of electron units.arrow_forward
- A 20 MeV alpha particle is fired toward a 238U nucleus. It follows the path as shown. What is the alpha particle’s speed when it is closest to the nucleus, 20 fm from its center? Assume that the nucleus doesn’t move.arrow_forwardHow much energy is imparted to one cell during one day’s treatment? Assume that the specific gravity of the tumor is 1 and that 1 J = 6 * 1018 eV. (a) 120 keV; (b) 12 MeV; (c) 120 MeV; (d) 120 * 103 MeV.arrow_forwardIn positron-emission tomography (PET) used in medical research and diagnosis, compounds containing unstable nuclei that emit positrons are introduced into the brain, destined for a site of interest in the brain. When a positron is emitted, it goes only a short distance before coming nearly to rest. It forms a bound state with an electron, called "positronium", which is rather similar to a hydrogen atom. The binding energy of positronium is very small compared to the rest energy of an electron. After a short time the positron and electron annihilate. In the annihilation, the positron and the electron disappear, and all of their rest energy goes into two photons (particles of light) which have zero mass; all their energy is kinetic energy. These high energy photons, called "gamma rays", are emitted at nearly 180° to each other. What energy of gamma ray (in MeV, million electron volts) should each of the detectors be made sensitive to? (The mass of an electron or positron is 9 x 10-31 kg.…arrow_forward
- The mean free path length of a 0.7-MeV photon in lead is closest to which of the following? (a)0.1039 cm (b)0.6697 cm (c)0.7038 cm (d)1.1394 cm (e)0.8776 cmarrow_forwardProtons of energy 5.1 MeV are incident on a silver foil of thickness 3.6 x 10-6 m. What fraction of the incident protons is scattered at the following angles? (The density of silver is 10.5 g/cm³, and its molar mass is 107.9 g/mol. Give your answer in decimal notation, e.g., 0.05 for 1/20.) (a) greater than 90° 3.716E-5 X (b) less than 5⁰arrow_forwardAn alpha particle with kinetic energy 11.0 Me V makes a collision with lead nucleus, but it is not "aimed" at the center of the lead nucleus, and has an initial nonzero angular momentum (with respect to the stationary lead nucleus) of magnitude L%=pob, where po is the magnitude of the initial momentum of the alpha particle and b=1.50x10-12m (Assume that the lead nucleus remains stationary and that it may be treated as a point charge. The atomic number of lead is 82. The alpha particle is a helium nucleus, with atomic number 2.) Repeat for b=1. 10×10-13 m. Express your answer in meters. ΑΣφ Submit Request Answer Part C Repeat for b=1.50×10-14 m. Express your answer in meters.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning