Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 11PCE
(a)
To determine
The affect of increase in mass of electron on the ionization energy of hydrogen atom.
(b)
To determine
The reason for the increase in ionization energy of hydrogen atom, when its electron mass is doubled.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. How many protons does 14/6C atom contain?
2.A hydrogen balloon that provides a 30 N upward force is connected to a 2 kg gift package with weight downward. What is the acceleration (in m/s2) of the package going up?
3.A car speeds up uniformly from 10 m/s to 20 m/s while traveling a distance of 75 m. What is its acceleration (in m/s2) during this time?
complete answers please
1. Show that the frequency of the photon emitted by a hydrogen atom in going from state n + 1 to n is always intermediate between the frequencies of revolution of the electron in the two orbits. 2. A µ − muon is in the n = 2 state of a muonic atom whose nucleus is a proton.Find the wavelength of the photon emitted when the muonic atom drops to its ground state. Consider nuclear motion in your calculation. Values for certain constants:h = 6.626 × 10 −34 Js, E 1 = −13.6 eV, r 1 = 5.29 × 10 −11 m, 1 eV = 1.602 × 10 −19 J.
1.) see photo
Chapter 31 Solutions
Physics (5th Edition)
Ch. 31.1 - Prob. 1EYUCh. 31.2 - Prob. 2EYUCh. 31.3 - Prob. 3EYUCh. 31.4 - Prob. 4EYUCh. 31.5 - Prob. 5EYUCh. 31.6 - Prob. 6EYUCh. 31.7 - Prob. 7EYUCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQ
Ch. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 1PCECh. 31 - Prob. 2PCECh. 31 - Prob. 3PCECh. 31 - Prob. 4PCECh. 31 - Prob. 5PCECh. 31 - Prob. 6PCECh. 31 - Prob. 7PCECh. 31 - Prob. 8PCECh. 31 - Prob. 9PCECh. 31 - Prob. 10PCECh. 31 - Prob. 11PCECh. 31 - Prob. 12PCECh. 31 - Prob. 13PCECh. 31 - Prob. 14PCECh. 31 - Prob. 15PCECh. 31 - Prob. 16PCECh. 31 - Prob. 17PCECh. 31 - Prob. 18PCECh. 31 - Prob. 19PCECh. 31 - Prob. 20PCECh. 31 - Prob. 21PCECh. 31 - Prob. 22PCECh. 31 - Prob. 23PCECh. 31 - Prob. 24PCECh. 31 - Prob. 25PCECh. 31 - Prob. 26PCECh. 31 - Prob. 27PCECh. 31 - Prob. 28PCECh. 31 - Prob. 29PCECh. 31 - Prob. 30PCECh. 31 - Prob. 31PCECh. 31 - Prob. 32PCECh. 31 - Prob. 33PCECh. 31 - Prob. 34PCECh. 31 - Prob. 35PCECh. 31 - Prob. 36PCECh. 31 - Prob. 37PCECh. 31 - Prob. 38PCECh. 31 - Prob. 39PCECh. 31 - Prob. 40PCECh. 31 - Prob. 41PCECh. 31 - Prob. 42PCECh. 31 - Prob. 43PCECh. 31 - Prob. 44PCECh. 31 - Prob. 45PCECh. 31 - Prob. 46PCECh. 31 - Prob. 47PCECh. 31 - Prob. 48PCECh. 31 - Prob. 49PCECh. 31 - Prob. 50PCECh. 31 - Prob. 51PCECh. 31 - Prob. 52PCECh. 31 - Give the electronic configuration for the ground...Ch. 31 - Prob. 54PCECh. 31 - Prob. 55PCECh. 31 - Prob. 56PCECh. 31 - The configuration of the outer electrons in Ni is...Ch. 31 - Prob. 58PCECh. 31 - Prob. 59PCECh. 31 - Prob. 60PCECh. 31 - Prob. 61PCECh. 31 - Prob. 62PCECh. 31 - Prob. 63PCECh. 31 - Prob. 64PCECh. 31 - Prob. 65PCECh. 31 - Prob. 66PCECh. 31 - Prob. 67PCECh. 31 - Prob. 68GPCh. 31 - Prob. 69GPCh. 31 - Prob. 70GPCh. 31 - Prob. 71GPCh. 31 - Prob. 72GPCh. 31 - Prob. 73GPCh. 31 - Prob. 74GPCh. 31 - Prob. 75GPCh. 31 - Prob. 76GPCh. 31 - Prob. 77GPCh. 31 - Prob. 78GPCh. 31 - Prob. 79GPCh. 31 - Prob. 80GPCh. 31 - Prob. 81GPCh. 31 - Prob. 82GPCh. 31 - Prob. 83GPCh. 31 - Prob. 84PPCh. 31 - Prob. 85PPCh. 31 - Prob. 86PPCh. 31 - Prob. 87PPCh. 31 - Prob. 88PPCh. 31 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The purpose of this problem is to show in three ways that the binding energy at the election in a hydrogen atom is negligible compared with the masses of the proton and electron. (a) Calculate the mass equivalent in u of the 13.6eV binding energy of an electron in a hydrogen atom, and compete this with the mass of the hydrogen atom obtained from Appendix A. (b) Subtract the mass at the proton given in Table 31.2 from the mass at the hydrogen atom given in Appendix A. You will find the difference is equal to the electron’s mass to three digits, implying the binding energy is small in comparison. (c) Take the ratio of the binding energy at the electron (13.6 eV) to the energy equivalent of the electron's mass (0.511 MeV). (d) Discuss how your answers confirm the stated purpose of this problem.arrow_forwardWhat is a hydrogen-like atom, and how are the energies and radii of its electron orbits related to those in hydrogen?arrow_forwardUnreasonable Results (a) Assuming it is nonrelativistic, calculate the velocity of an electron with a 0.100-fm wavelength (small enough to detect details of a nucleus). (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forward
- Suppose the range for 5.0 MeVa ray is known to be 2.0 mm in a certain material. Does this mean that every 5.0 MeVa a ray that strikes this material travels 2.0 mm, or does the range have an average value with some statistical fluctuations in the distances traveled? Explain.arrow_forwardTwo astronomy students travel to South Dakota. One stands on Earth’s surface and enjoys some sunshine. At the same time, the other descends into a gold mine where neutrinos are detected, arriving in time to detect the creation of a new radioactive argon nucleus. Although the photon at the surface and the neutrinos in the mine arrive at the same time, they have had very different histories. Describe the differences.arrow_forwardWhen a nucleus (decays, does the (particle move continuously from inside the nucleus to outside? That is, does it travel each point along an imaginary line from inside to out? Explain.arrow_forward
- If a hydrogen atom has its electron in the n=4 state, how much energy in eV is needed to ionize it?arrow_forward(a) Estimate the mass of the luminous matter in the known universe, given there are 1011 galaxies, each containing 1011 stars of average mass 1.5 times that of our Sun. (b) How many protons (the most abundant nuclide) are there in this mates? (c) Estimate the total number of particles in the observable universe by multiplying the answer to (b) by two, since there is an electron for each proton, and then by 109, since there are far more particles (such as photons and neutrinos) in space than in luminous matter.arrow_forwardHow do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun? Explain how the correspondence principle applies here.arrow_forward
- Construct Your Own Problem The solar corona is so hot that most atoms in it are ionized. Consider a hydrogen-like atom in the corona that has only a single electron. Construct a problem in which you calculate selected spectral energies and wavelengths of the Lyman, Balmer, or other series of this atom that could be used to identify its presence in a very hot gas. You will need to choose the atomic number of the atom, identify the element, and choose which spectral lines to consider.arrow_forwardWhat are isotopes? Why do isotopes of the same atom share the same chemical properties?arrow_forwarda.) Calculate the wavelength and energy of the photon emitted in the decay ni=4 to nf=3 for the Li+2 ion. Show calculation. b.) Provide a written explanation for why the value calculated above is different from the value for the same ni and nf values for hydrogen. c.) What is the frequency of energy needed to excite a hydrogen electron from n=1 to n=4? Show calculation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning