Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 31, Problem 62PCE
To determine
The wavelength of the
K α
X-ray emitted by iron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The mass attenuation coefficient of copper is 0.0589 cm2/g for 1.0-MeV photons. The intensity of 1.0-MeV X-ray photons in a narrow beam is reduced to what fraction by a slab of copper 1 cm thick? The density of copper is 8.9 g/cm3
The first ionization energy of nitrogen is 14,53414 eV. Calculate the wavelength of the corresponding photon radiation in nanometers with integer accuracy?
1.
A point source of Co-60 gamma rays emits qual number of photons of 1.17 and 1.33
MeV, giving a flux density of 5.7 × 10⁹ photons/cm² sec at a specified location. What
is the energy flux density there, expressed in erg/cm² sec and in J/m² min?
Chapter 31 Solutions
Physics (5th Edition)
Ch. 31.1 - Prob. 1EYUCh. 31.2 - Prob. 2EYUCh. 31.3 - Prob. 3EYUCh. 31.4 - Prob. 4EYUCh. 31.5 - Prob. 5EYUCh. 31.6 - Prob. 6EYUCh. 31.7 - Prob. 7EYUCh. 31 - Prob. 1CQCh. 31 - Prob. 2CQCh. 31 - Prob. 3CQ
Ch. 31 - Prob. 4CQCh. 31 - Prob. 5CQCh. 31 - Prob. 6CQCh. 31 - Prob. 7CQCh. 31 - Prob. 8CQCh. 31 - Prob. 9CQCh. 31 - Prob. 1PCECh. 31 - Prob. 2PCECh. 31 - Prob. 3PCECh. 31 - Prob. 4PCECh. 31 - Prob. 5PCECh. 31 - Prob. 6PCECh. 31 - Prob. 7PCECh. 31 - Prob. 8PCECh. 31 - Prob. 9PCECh. 31 - Prob. 10PCECh. 31 - Prob. 11PCECh. 31 - Prob. 12PCECh. 31 - Prob. 13PCECh. 31 - Prob. 14PCECh. 31 - Prob. 15PCECh. 31 - Prob. 16PCECh. 31 - Prob. 17PCECh. 31 - Prob. 18PCECh. 31 - Prob. 19PCECh. 31 - Prob. 20PCECh. 31 - Prob. 21PCECh. 31 - Prob. 22PCECh. 31 - Prob. 23PCECh. 31 - Prob. 24PCECh. 31 - Prob. 25PCECh. 31 - Prob. 26PCECh. 31 - Prob. 27PCECh. 31 - Prob. 28PCECh. 31 - Prob. 29PCECh. 31 - Prob. 30PCECh. 31 - Prob. 31PCECh. 31 - Prob. 32PCECh. 31 - Prob. 33PCECh. 31 - Prob. 34PCECh. 31 - Prob. 35PCECh. 31 - Prob. 36PCECh. 31 - Prob. 37PCECh. 31 - Prob. 38PCECh. 31 - Prob. 39PCECh. 31 - Prob. 40PCECh. 31 - Prob. 41PCECh. 31 - Prob. 42PCECh. 31 - Prob. 43PCECh. 31 - Prob. 44PCECh. 31 - Prob. 45PCECh. 31 - Prob. 46PCECh. 31 - Prob. 47PCECh. 31 - Prob. 48PCECh. 31 - Prob. 49PCECh. 31 - Prob. 50PCECh. 31 - Prob. 51PCECh. 31 - Prob. 52PCECh. 31 - Give the electronic configuration for the ground...Ch. 31 - Prob. 54PCECh. 31 - Prob. 55PCECh. 31 - Prob. 56PCECh. 31 - The configuration of the outer electrons in Ni is...Ch. 31 - Prob. 58PCECh. 31 - Prob. 59PCECh. 31 - Prob. 60PCECh. 31 - Prob. 61PCECh. 31 - Prob. 62PCECh. 31 - Prob. 63PCECh. 31 - Prob. 64PCECh. 31 - Prob. 65PCECh. 31 - Prob. 66PCECh. 31 - Prob. 67PCECh. 31 - Prob. 68GPCh. 31 - Prob. 69GPCh. 31 - Prob. 70GPCh. 31 - Prob. 71GPCh. 31 - Prob. 72GPCh. 31 - Prob. 73GPCh. 31 - Prob. 74GPCh. 31 - Prob. 75GPCh. 31 - Prob. 76GPCh. 31 - Prob. 77GPCh. 31 - Prob. 78GPCh. 31 - Prob. 79GPCh. 31 - Prob. 80GPCh. 31 - Prob. 81GPCh. 31 - Prob. 82GPCh. 31 - Prob. 83GPCh. 31 - Prob. 84PPCh. 31 - Prob. 85PPCh. 31 - Prob. 86PPCh. 31 - Prob. 87PPCh. 31 - Prob. 88PPCh. 31 - Prob. 89PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A light detector has an area of 3.1m2 and absorbs 53.9% of the incident light, which is at wavelength 682.3nm. The detector faces an isotropic source, 2.1m from the source. If the detector absorbs photons at the rate of exactly 6photons/s , at what rate( in photons/s) does the emitter emit light?arrow_forwardA Perspex (Lucite) phantom is used to calibrate a 6 MV photon beam. A cylindrical air ion chamber has a wall thickness (polystyrene) of 0.20 g/cm2 and an inner diameter of 5 mm. The ion chamber is placed at a depth of 5 cm in the phantom. The NxAion = 1.05 × 1010 R/C (T = 22 oC, P = 760 torr) for Co-60 for this chamber. Charge collected is 2.50 × 10-8C at P = 750 torr and T = 20.0 oC. The ion collection efficiency is 0.985. (a) Calculate the Ngas (Gy/C) for the chamber. (b) Calculate the absorbed dose (Gy) in Perspex at this depth. (c) What would be the absorbed dose (Gy) in water at approximately the same depth in a water phantom?arrow_forwardMeasured X-ray energies for Silver (Z=47) are: K_alpha= 21.990 keV, K_beta=25.145. The binding energy of the K shell electron in Silver is 25.514 keV. Using these find the energy of L_alpha X-ray and binding energy of the L electron.arrow_forward
- Suppose a star with radius 8.51 108 m has a peak wavelength of 689 nm in the spectrum of its emitted radiation. (a) Find the energy of a photon with this wavelength. J/photon(b) What is the surface temperature of the star? K(c) At what rate is energy emitted from the star in the form of radiation? Assume the star is a blackbody (e = 1). W(d) Using the answer to part (a), estimate the rate at which photons leave the surface of the star. photons/sarrow_forward08:20 0.40 KB/S l הום 4G 68 You 11 minutes ago 50. The linear absorption coefficients for 0.05-nm x-rays in lead and in iron are, respectively, 5.8 X 10* m-' and 1.1 x 10* m-. How thick should an iron shield be in order to pro- vide the same protection from these x-rays as 10 mm of lead? |||arrow_forwardWhat are the approximate energies (in keV) of the K and K x rays for scandium? Ka 6 × kev kevarrow_forward
- CT scanners do not detect details smaller than about 0.5 Is this limitation clue to the wavelength of x lays? Explain.arrow_forward1. For a specimen V3Ga, the critical fields are respectively 1.4 x 105A/m and 4.2 x 105A/m for 14K and 13K. Calculate the transition temperature and critical fields at 0K and 4.2K 2. Estimate the London penetration depth from the following data: critical temperature = 3.7K; Density = 7.3 x 103kg/m3; Atomic weight = 118.7 and effective mass m*=1.9me(kg)arrow_forward5 6 À (x10-² nm) 7 8 9 10 Relative intensity Mo 9 9 12 vith → To 15.2 → To 37.2arrow_forward
- The Ka X-ray emission line of tungsten occurs at λ = 0.021 nm. The energy difference between K and L levels in this atoms is about (a) 0.51 MeV (b) 1.2 MeV (c) 59 keV (d) 13.6 eVarrow_forwardYour answer is partially correct. A laser emits light at wavelength A = 598 nm in a beam of diameter 3.7 mm and at an energy-emission rate of 5.5 mW. A detector in the beam's path absorbs the beam. At what rate per unit area does the detector absorb photons? Number 1.429048888 Units photons/s-m^2arrow_forwardCopper has a density of 8.9 g/cm3 and a gram-atomic mass of 63.56. The total atomic attenuation coefficient of copper is 8.8 × 10−24 cm2/atom for 500-keV photons. What thickness (in centimeters) of copper is required to attenuate 500-keV photons to half of the original number?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning