Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 30, Problem 81P
To determine
To find:
a) Magnitude of the magnetic field in the region 1.
b) Direction of magnetic field in the region 1.
c) Magnitude of the magnetic field in the region 2.
d) Direction of magnetic field in the region 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
*.28 G0 In Fig. 30-51, a rectangular
loop of wire with length a = 2.2 cm, width b = 0.80 cm, and resist-
ance R = 0.40 mn is placed near an infinitely long wire carrying
current i = 4.7 A. The loop is then moved away from the wire at
constant speed v = 3.2 mm/s. When the center of the loop is at
distance r = 1.5b, what are (a) the magnitude of the magnetic flux
through the loop and (b) the current induced in the loop?
%3D
xx x X
*21 In Fig. 30-44, a stiff wire bent
X x X
a
into a semicircle of radius a = 2.0 cm
is rotated at constant angular speed 40
rev/s in a uniform 20 mT magnetic
field. What are the (a) frequency and
(b) amplitude of the emf induced in
X X X X Ix
the loop?
R
Fig. 30-44 Problem 21.
X X
HRW TP31-15P A square wire loop with 2.99 m sides is perpendicular to a uniform magnetic field, with half the area of the loop in the field as shown in Fig. 31-38. The loop contains a 20.0 V battery with negligible internal resistance. If the magnitude of the field varies with time according to B = 0.4110 0.780t, with B in teslas and t in
seconds, what is the net emf in the circuit and the direction of the current though the battery?
V
counterclockwise
O clockwise
B
20.0 V
Figure 31-38
Chapter 30 Solutions
Fundamentals of Physics Extended
Ch. 30 - If the circular conductor in Fig. 30-21 undergoes...Ch. 30 - Prob. 2QCh. 30 - Prob. 3QCh. 30 - Prob. 4QCh. 30 - Prob. 5QCh. 30 - Prob. 6QCh. 30 - Prob. 7QCh. 30 - Prob. 8QCh. 30 - Prob. 9QCh. 30 - Prob. 10Q
Ch. 30 - Figure 30-31 shows three situations in which a...Ch. 30 - Figure 30-32 gives four situations in which we...Ch. 30 - Prob. 1PCh. 30 - A certain elastic conducting material is stretched...Ch. 30 - Prob. 3PCh. 30 - A wire loop of radius 12 cm and resistance 8.5 is...Ch. 30 - Prob. 5PCh. 30 - Figure 30-37a shows a circuit consisting of an...Ch. 30 - In Fig. 30-38, the magnetic flux through the loop...Ch. 30 - Prob. 8PCh. 30 - Prob. 9PCh. 30 - Prob. 10PCh. 30 - A rectangular coil of N turns and of length a and...Ch. 30 - Prob. 12PCh. 30 - Prob. 13PCh. 30 - GO In Fig. 30-42a, a uniform magnetic field B...Ch. 30 - GO A square wire loop with 2.00 m sides is...Ch. 30 - GO Figure 30-44a shows a wire that forms a...Ch. 30 - A small circular loop of area 2.00 cm2 is placed...Ch. 30 - Prob. 18PCh. 30 - ILW An electric generator contains a coil of 100...Ch. 30 - At a certain place, Earths magnetic field has...Ch. 30 - Prob. 21PCh. 30 - A rectangular loop area = 0.15 m2 turns in a...Ch. 30 - SSM Figure 30-47 shows two parallel loops of wire...Ch. 30 - Prob. 24PCh. 30 - GO Two long, parallel copper wires of diameter 2.5...Ch. 30 - GO For the wire arrangement in Fig. 30-49, a =...Ch. 30 - ILW As seen in Fig. 30-50, a square loop of wire...Ch. 30 - Prob. 28PCh. 30 - Prob. 29PCh. 30 - Prob. 30PCh. 30 - Prob. 31PCh. 30 - A loop antenna of area 2.00 cm2 and resistance...Ch. 30 - GO Figure 30-54 shows a rod of length L = 10.0 cm...Ch. 30 - Prob. 34PCh. 30 - Prob. 35PCh. 30 - Prob. 36PCh. 30 - Prob. 37PCh. 30 - Prob. 38PCh. 30 - Prob. 39PCh. 30 - Prob. 40PCh. 30 - A circular coil has a 10.0 cm radius and consists...Ch. 30 - Prob. 42PCh. 30 - Prob. 43PCh. 30 - Prob. 44PCh. 30 - Prob. 45PCh. 30 - Prob. 46PCh. 30 - Inductors in series. Two inductors L1 and L2 are...Ch. 30 - Prob. 48PCh. 30 - Prob. 49PCh. 30 - Prob. 50PCh. 30 - ILW The current in an RL circuit drops from 1.0 A...Ch. 30 - Prob. 52PCh. 30 - Prob. 53PCh. 30 - Prob. 54PCh. 30 - Prob. 55PCh. 30 - Prob. 56PCh. 30 - In Fig. 30-65, R = 15 , L = 5.0 H, the ideal...Ch. 30 - Prob. 58PCh. 30 - Prob. 59PCh. 30 - Prob. 60PCh. 30 - Prob. 61PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 63PCh. 30 - Prob. 64PCh. 30 - Prob. 65PCh. 30 - A circular loop of wire 50 mm in radius carries a...Ch. 30 - Prob. 67PCh. 30 - Prob. 68PCh. 30 - ILW What must be the magnitude of a uniform...Ch. 30 - Prob. 70PCh. 30 - Prob. 71PCh. 30 - Prob. 72PCh. 30 - Prob. 73PCh. 30 - Prob. 74PCh. 30 - Prob. 75PCh. 30 - Prob. 76PCh. 30 - Prob. 77PCh. 30 - Prob. 78PCh. 30 - SSM In Fig. 30-71, the battery is ideal and = 10...Ch. 30 - Prob. 80PCh. 30 - Prob. 81PCh. 30 - A uniform magnetic field B is perpendicular to the...Ch. 30 - Prob. 83PCh. 30 - Prob. 84PCh. 30 - Prob. 85PCh. 30 - Prob. 86PCh. 30 - Prob. 87PCh. 30 - Prob. 88PCh. 30 - A coil with an inductance of 2.0 H and a...Ch. 30 - Prob. 90PCh. 30 - Prob. 91PCh. 30 - Prob. 92PCh. 30 - Prob. 93PCh. 30 - A long cylindrical solenoid with 100 turns/cm has...Ch. 30 - Prob. 95PCh. 30 - A square loop of wire is held in a uniform 0.24 T...Ch. 30 - Prob. 97PCh. 30 - The inductance of a closely wound coil is such...Ch. 30 - The magnetic field in the interstellar space of...Ch. 30 - Prob. 100PCh. 30 - A toroid has a 5.00 cm square cross section, an...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular loop of wire with a radius of 4.0 cm is in a uniform magnetic field of magnitude 0.060 T. The plane of the loop is perpendicular to the direction of the magnetic field. In a time interval of 0.50 s, the magnetic field changes to the opposite direction with a magnitude of 0.040 T. What is the magnitude of the average emf induced in the loop? (a) 0.20 V (b) 0.025 V (c) 5.0 mV (d) 1.0 mV (e) 0.20 mVarrow_forwardA rectangular conducting loop with dimensions w = 32.0 cm and h = 78.0 cm is placed a distance a = 5.00 cm from a long, straight wire carrying current I = 7.00 A in the downward direction (Fig. P32.75). a. What is the magnitude of the magnetic flux through the loop? b. If the current in the wire is increased linearly from 7.00 A to 15.0 A in 0.230 s, what is the magnitude of the induced emf in the loop? c. What is the direction of the current that is induced in the loop during this time interval?arrow_forwardA rectangular coil consists of N = 100 closely wrapped turns and has dimensions a = 0.400 m and b = 0.300 m. The coil is hinged along the y axis, and its plane makes an angle = 30.0 with the x axis (Fig. P22.25). (a) What is the magnitude of the torque exerted on the coil by a uniform magnetic field B = 0.800 T directed in the positive x direction when the current is I = 1.20 A in the direction shown? (b) What is the expected direction of rotation of the coil? Figure P22.25arrow_forward
- The magnetic flux through a metal ring varies with time t according to (B = at3 bt2, where (B is in webers, a = 6.00 s3, b = 18.0 s2, and t is in seconds. The resistance of the ring is 3.00 . For the interval from t = 0 to t = 2.00 s, determine the maximum current induced in the ring.arrow_forwardA circular loop of wire of resistance R = 0.500 and radius r = 8.00 cm is in a uniform magnetic field directed out of the page as in Figure P31.54. If a clockwise current of I = 2.50 mA is induced in the loop, (a) is the magnetic field increasing or decreasing in time? (b) Find the rate at which the field is changing with time. Figure P31.54arrow_forwardA flat loop of wire consisting of a single turn of cross-sectional area 8.00 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.00 ?arrow_forward
- Problem 1: Figure shows a conducting loop consisting of a half-circle of radius r = 0.20 m and three straight sections. The half circlelies in a uniform magnetic field that is directed out of the page; the field magnitude is given by B = 4.0ť² + 2.0t + 3.0, with B in teslas and t in seconds. An ideal battery with emfat = 2.0 V is connected to the loop. The resistance of the loop is 2.00 . (a) What are the magnitude and direction of the emf ind induced around the loop by field at t 10 s? (b) What is the current in the loop at t 10 s? d 0&vearrow_forwardFigure (a) shows a rectangular conducting loop of resistance R = 0.0340 Q, height H = 3.8 cm, and length D= 3.1 cm being pulled at constant speed v ='55 cm/s through two regions of uniform magnetic field. Figure (b) gives the current i induced in the loop as a function of the position x of the right side of the loop. The vertical axis scale is set by i, = 4.1 µA. For example, a current equal to i, is induced clockwise as the loop enters region 1. What are the (a) magnitude and (b) direction of the magnetic field in region 1? What are the (c) magnitude and (d) direction of the magnetic field in region 2? H (a) (b) (a) HT (b) (c) HT (d) (yn) !arrow_forwardA = 60 B = 70 C = 170 D = 7arrow_forward
- Consider a wire loop of the radius r = 0.75 m moving with a constant speed of 7 m/s along magnetic field lines perpendicular to the loop plane. The magnetic field is changing with the distance x along the direction of the wire loop motion as B = 1.5+4*x (x is in meters). Determine the magnitude of the current flowing through the loop if the cross section area of the wire A = 0.3 mm^2 and the specific resistance ρ = 13 Ohm*m.arrow_forwardA long thin solenoid has 808 turns per meter and radius 3.00cm. The current in the solenoid is increasing at a rate of 60A/s. What is the magnitude of the induced electric field (in V/m) at a point near the center of the solenoid and 0.8cm from its axis?arrow_forwardSuppose a uniform magnetic field is perpendicular to the 8(1/2) ✕ 11-in. page of your homework and a rectangular metal loop lies on the page. The loop's sides line up with the edges of the page. The magnetic field is changing with time as described by B = 9.57 ✕ 10−3 t, where B is in teslas and t is in seconds. Find the magnitude of the emf induced in the loop.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill